Skip to Main content Skip to Navigation
Journal articles

Juggling bubbles in square capillaries: an experimental proof of non-pairwise bubble interactions

Abstract : The physical properties of an ensemble of tightly packed particles like bubbles, drops or solid grains are controlled by their interactions. For the case of bubbles and drops it has recently been shown theoretically and computationally that their interactions cannot generally be represented by pair-wise additive potentials, as is commonly done for simulations of soft grain packings. This has important consequences for the mechanical properties of foams and emulsions, especially for strongly deformed bubbles or droplets well above the jamming point. Here we provide the first experimental confirmation of this prediction by quantifying the interactions between bubbles in simple model foams consisting of trains of equal-volume bubbles confined in square capillaries. The obtained interaction laws agree quantitatively with Surface Evolver simulations and are well described by an analytically derived expression based on the recently developed non-pairwise interaction model of Höhler et al. based on Morse & Witten theory. While all experiments are done at Bond numbers sufficiently low for the hydrostatic pressure variation across one bubble to be negligible, we provide the full analysis taking into account gravity in the appendix for the interested reader. Even though the article focuses on foams, all results directly apply to the case of emulsions.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02396401
Contributor : Wiebke Drenckhan-Andreatta <>
Submitted on : Monday, November 23, 2020 - 10:40:41 AM
Last modification on : Tuesday, December 8, 2020 - 3:36:29 AM

File

Ginot_Mariot_SoftMatter_2019.p...
Files produced by the author(s)

Identifiers

Citation

Gaël Ginot, Sandrine Mariot, Andy Kraynik, Reinhard Höhler, Wiebke Drenckhan. Juggling bubbles in square capillaries: an experimental proof of non-pairwise bubble interactions. Soft Matter, Royal Society of Chemistry, 2019, 15 (22), pp.4570-4582. ⟨10.1039/C8SM02477D⟩. ⟨hal-02396401⟩

Share

Metrics

Record views

121

Files downloads

43