M. D. Rao, Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes, Journal of Sound and Vibration, vol.262, issue.3, pp.457-474, 2003.
DOI : 10.1016/S0022-460X(03)00106-8

L. Cremer and M. Heckl, Structure-Borne Sound: structural vibrations and sound radiation at audio frequencies, 1988.

D. I. Jones and W. J. Trapp, Influence of additive damping on resonance fatigue of structures, Journal of Sound and Vibration, vol.17, issue.2, pp.157-185, 1971.
DOI : 10.1016/0022-460X(71)90453-6

V. V. Krylov, New type of vibration dampers utilising the effect of acoustic 'black holes, Acta Acustica United with Acustica, vol.90, pp.830-837, 2004.

V. V. Krylov and R. E. Winward, Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates, Journal of Sound and Vibration, vol.300, issue.1-2, pp.43-49, 2007.
DOI : 10.1016/j.jsv.2006.07.035

V. B. Georgiev, J. Cuenca, F. Gautier, L. Simon, and V. V. Krylov, Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect, Journal of Sound and Vibration, vol.330, issue.11, pp.2497-2508, 2011.
DOI : 10.1016/j.jsv.2010.12.001

C. Vemula, A. N. Norris, and G. D. Cody, ATTENUATION OF WAVES IN PLATES AND BARS USING A GRADED IMPEDANCE INTERFACE AT EDGES, Journal of Sound and Vibration, vol.196, issue.1, pp.107-127, 1996.
DOI : 10.1006/jsvi.1996.0471

M. A. Mironov, Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval, Soviet Physics, Acoustics, vol.34, issue.3, pp.318-319, 1988.

V. B. Georgiev, J. Cuenca, F. Gautier, M. Moleron, and L. Simon, Numerical and experimental investigation of the acoutic black hole effect for 490 vibration damping in beams and elliptical plates, 2009.

V. Denis, A. Pelat, F. Gautier, and B. Elie, Modal Overlap Factor of a beam with an acoustic black hole termination, Journal of Sound and Vibration, vol.333, issue.12, pp.2475-2488, 2014.
DOI : 10.1016/j.jsv.2014.02.005

URL : https://hal.archives-ouvertes.fr/hal-01288274

]. F. Gautier, J. Cuenca, V. V. Krylov, and L. Simon, Experimental investigation of the acoustic black hole effect for vibration damping in elliptical plates, Acoustic'08, p.495, 2008.
DOI : 10.1121/1.2933786

E. P. Bowyer, D. J. O-'boy, V. V. Krylov, and J. L. Horner, Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile, Applied Acoustics, vol.73, issue.5, pp.514-523, 2012.
DOI : 10.1016/j.apacoust.2011.12.010

E. P. Bowyer, D. J. O-'boy, V. V. Krylov, F. Gautier, D. J. O-'boy et al., Experimental investigations of damping flexural vibrations in plates containing tapered indentations of power-law profile Damping of flexural vibrations in circular plates with tapered central holes, Applied Acoustics Journal of Sound and Vibration, vol.74, issue.33010, pp.2220-2236, 2011.

O. Aklouche, A. Pelat, S. Maugeais, and F. Gautier, Scattering of flexural waves from an acoustic black hole in an infinite thin plate, pp.23-25, 2013.

O. Aklouche, A. Pelat, S. Maugeais, and F. Gautier, Model of the scattering of flexural waves from a two-dimensional acoustic black hole, in: Congrès Français d'Acoustique, pp.22-25, 2014.

V. Denis, Vibration damping in beams using the acoustic black hole 515 effect, 2014.

V. Denis, J. Poittevin, A. Pelat, F. Gautier, P. Picart et al., Characteristics of the vibration field inside an acoustic black hole placed on a beam, pp.22-24, 2015.

V. Denis, F. Gautier, A. Pelat, and J. Poittevin, Measurement and modelling of the reflection coefficient of an Acoustic Black Hole termination, Journal of Sound and Vibration, vol.349, pp.67-79, 2015.
DOI : 10.1016/j.jsv.2015.03.043

URL : https://hal.archives-ouvertes.fr/hal-01288278

D. Ross, E. L. Ungar, E. M. Kerwin, and J. E. Ruzicka, Damping of plate flexural vibrations by means of viscoelastic laminae, in: Structural damping, 49?57. 525 [21] A. Leissa, Vibration of plates, 1960.

D. J. Gorman, A general solution for the free vibration of rectangular plates resting on uniform elastic edge supports, Journal of Sound and Vibration, vol.139, issue.2, pp.325-335, 1990.
DOI : 10.1016/0022-460X(90)90893-5

S. Y. Lee and S. M. Lin, Levy-type solution for the analysis of nonuniform plates, Computers & Structures, vol.49, issue.6, pp.530-931, 1993.
DOI : 10.1016/0045-7949(93)90004-W

Y. Xiang, Y. B. Zhao, and G. W. Wei, Levy solutions for vibration of multi-span rectangular plates, International Journal of Mechanical Sciences, vol.44, issue.6, pp.1195-1218, 2002.
DOI : 10.1016/S0020-7403(02)00027-9

J. Guyader, S. Felix, and V. Pagneux, Vibration in Continuous Media Multimodal analysis of acoustic propagation in three-dimensional bends, ISTE Ltd Wave Motion, vol.36, issue.2, pp.157-168, 2002.

S. W. Doebling, C. R. Farrar, and M. B. , Prime, A summary review of vibration-based damage identification methods, The Shock and Vibra- 540 tion Digest, pp.91-105, 1998.

A. Joshi and B. S. Madhusudhan, A unified approach to free vibration of locally damaged beams having various homogeneous boundary conditions, Journal of Sound and Vibration, vol.147, issue.3, pp.475-488, 1991.
DOI : 10.1016/0022-460X(91)90495-6

V. Pagneux, Multimodal admittance method in waveguides and singularity behavior at high frequencies, Journal of Computational and Applied Mathematics, vol.234, issue.6, pp.1834-1841, 2010.
DOI : 10.1016/j.cam.2009.08.034

J. Schiff and S. Shnider, A Natural Approach to the Numerical Integration of Riccati Differential Equations, SIAM Journal on Numerical Analysis, vol.36, issue.5, pp.1392-1413, 1999.
DOI : 10.1137/S0036142996307946

A. Iserles, A. Martinsen, and S. P. Norset, On the implementation of the method of magnus series for linear differential equations, Bit Numerical Mathematics, vol.39, issue.2, pp.281-304, 1999.
DOI : 10.1023/A:1022393913721

]. Z. Wang and A. N. Norris, Waves in cylindrical shells with circumferential submembers: a matrix approach, Journal of Sound and Vibration, vol.181, issue.3, pp.555-457, 1995.
DOI : 10.1006/jsvi.1995.0152

V. V. Krylov and F. J. Tilman, Acoustic ???black holes??? for flexural waves as effective vibration dampers, Journal of Sound and Vibration, vol.274, issue.3-5, pp.3-5, 2004.
DOI : 10.1016/j.jsv.2003.05.010

P. A. Feurtado, S. C. Conlon, and F. Semperlotti, A normalized wave number variation parameter for acoustic black hole design, The Journal of the Acoustical Society of America, vol.136, issue.2, pp.148-152, 2014.
DOI : 10.1121/1.4890205

V. V. Krylov, Propagation of localized vibration modes along edges of 565 immersed wedge-like structures : geometrical-acoustics approach, Journal of Computational Acoustics, vol.7, issue.1, pp.57-70, 1999.