Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Invisibility and perfect reflectivity in waveguides with finite length branches

Abstract : We consider a time-harmonic wave problem, appearing for example in water-waves and in acoustics, in a setting such that the analysis reduces to the study of a 2D waveguide problem with a Neumann boundary condition. The geometry is symmetric with respect to an axis orthogonal to the direction of propagation of waves. Moreover, the waveguide contains one branch of finite length. We analyse the behaviour of the complex scattering coefficients R, T as the length of the branch increases and we exhibit situations where non reflectivity (R = 0, |T| = 1), perfect reflectivity (|R| = 1, T = 0) or perfect invisibility (R = 0, T = 1) hold. Numerical experiments allow us to illustrate the different results.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Lucas Chesnel <>
Soumis le : jeudi 21 septembre 2017 - 17:42:02
Dernière modification le : mercredi 14 octobre 2020 - 04:10:22


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01469833, version 2



Lucas Chesnel, Sergei Nazarov, Vincent Pagneux. Invisibility and perfect reflectivity in waveguides with finite length branches. SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2018. ⟨hal-01469833v2⟩



Consultations de la notice


Téléchargements de fichiers