A. Alù, M. G. Silveirinha, and N. Engheta, Transmission-line analysis of ?-near-zero-filled narrow channels, Phys. Rev. E, vol.78, issue.1, p.16604, 2008.

A. Aslanyan, L. Parnovski, and D. Vassiliev, Complex resonances in acoustic waveguides, Quart. J. Mech. Appl. Math, vol.53, issue.3, pp.429-447, 2000.

A. Bonnet-ben-dhia, L. Chesnel, and S. A. Nazarov, Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions, Inverse Problems, vol.31, issue.4, p.45006, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01109534

A. Bonnet-ben-dhia, L. Chesnel, and S. A. Nazarov, Perfect transmission invisibility for waveguides with sound hard walls, J. Math. Pures Appl, vol.111, pp.79-105, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01371163

A. Bonnet-ben-dhia, E. Lunéville, Y. Mbeutcha, and S. A. Nazarov, A method to build non-scattering perturbations of two-dimensional acoustic waveguides, Math. Methods Appl. Sci, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225313

A. Bonnet-ben-dhia and S. A. Nazarov, Obstacles in acoustic waveguides becoming "invisible" at given frequencies, Acoust. Phys, vol.59, issue.6, pp.633-639, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00937689

L. Chesnel, N. Hyvönen, and S. Staboulis, Construction of indistinguishable conductivity perturbations for the point electrode model in electrical impedance tomography, SIAM J. Appl. Math, vol.75, issue.5, pp.2093-2109, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01109544

L. Chesnel and S. A. Nazarov, Team organization may help swarms of flies to become invisible in closed waveguides, Inverse Problems and Imaging, vol.10, issue.4, pp.977-1006, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01216135

L. Chesnel, S. A. Nazarov, and V. Pagneux, Invisibility and perfect reflectivity in waveguides with finite length branches, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01469833

L. Chesnel and V. Pagneux, Perfect reflection and trapped modes in waveguides with finite length branches. preprint, 2018.

P. J. Cobelli, V. Pagneux, A. Maurel, and P. Petitjeans, Experimental study on water-wave trapped modes, J. Fluid Mech, vol.666, pp.445-476, 2011.

E. B. Davies and L. Parnovski, Trapped modes in acoustic waveguides, Q. J. Mech. Appl. Math, vol.51, issue.3, pp.477-492, 1998.
DOI : 10.1093/qjmam/51.3.477

URL : https://academic.oup.com/qjmam/article-pdf/51/3/477/5401094/510477.pdf

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects, J. Appl. Phys, vol.105, issue.4, p.44905, 2009.

D. V. Evans, Trapped acoustic modes, IMA J. Appl. Math, vol.49, issue.1, pp.45-60, 1992.

D. V. Evans, M. Levitin, and D. Vassiliev, Existence theorems for trapped modes, J. Fluid Mech, vol.261, pp.21-31, 1994.
DOI : 10.1017/s0022112094000236

URL : http://discovery.ucl.ac.uk/170542/1/download15.pdf

D. V. Evans, M. Mciver, and R. Porter, Transparency of structures in water waves, Proceedings of 29th International Workshop on Water Waves and Floating Bodies, 2014.

R. Fleury and A. Alù, Extraordinary sound transmission through density-near-zero ultranarrow channels, Phys. Rev. Lett, vol.111, issue.5, p.55501, 2013.
DOI : 10.1103/physrevlett.111.055501

URL : http://arxiv.org/pdf/1210.8056

Y. Fu, Y. Xu, and H. Chen, Additional modes in a waveguide system of zero-indexmetamaterials with defects, Scientific reports, vol.4, 2014.

J. W. González, M. Pacheco, L. Rosales, and P. A. Orellana, Bound states in the continuum in graphene quantum dot structures, Europhys. Lett, vol.91, issue.6, p.66001, 2010.

P. Henrici, Power series-integration-conformal mapping-location of zeros, Pure and Applied Mathematics, vol.1, 1974.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Solja?i?, Bound states in the continuum, Nat. Rev. Mater, vol.1, p.16048, 2016.

I. V. Kamotski?-i and S. A. Nazarov, An augmented scattering matrix and exponentially decreasing solutions of an elliptic problem in a cylindrical domain, Zap. Nauchn. Sem. S.-Peterburg

, Otdel. Mat. Inst. Steklov. (POMI), vol.264, pp.3657-3666, 2000.

C. M. Linton and P. Mciver, Embedded trapped modes in water waves and acoustics, Wave motion, vol.45, issue.1, pp.16-29, 2007.

V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevski?-i, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, vol.1, 2000.

N. Moiseyev, Suppression of Feshbach resonance widths in two-dimensional waveguides and quantum dots: a lower bound for the number of bound states in the continuum, Phys. Rev. Lett, vol.102, issue.16, p.167404, 2009.

S. A. Nazarov, A criterion for the existence of decaying solutions in the problem on a resonator with a cylindrical waveguide, Funct. Anal. Appl, vol.40, issue.2, pp.97-107, 2006.

S. A. Nazarov, Sufficient conditions on the existence of trapped modes in problems of the linear theory of surface waves, J. Math. Sci, vol.167, issue.5, pp.713-725, 2010.

S. A. Nazarov, Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide, Theor. Math. Phys, vol.167, issue.2, pp.606-627, 2011.

S. A. Nazarov and B. A. Plamenevski?, Selfadjoint elliptic problems: scattering and polarization operators on the edges of the boundary, Algebra i Analiz, vol.6, issue.4, pp.157-186, 1994.

S. A. Nazarov and J. H. Videman, Existence of edge waves along three-dimensional periodic structures, J. Fluid Mech, vol.659, pp.225-246, 2010.

V. C. Nguyen, L. Chen, and K. Halterman, Total transmission and total reflection by zero index metamaterials with defects, Phys. Rev. Lett, vol.105, issue.23, p.233908, 2010.

A. Ourir, A. Maurel, and V. Pagneux, Tunneling of electromagnetic energy in multiple connected leads using ?-near-zero materials, Opt. Lett, vol.38, issue.12, pp.2092-2094, 2013.

V. Pagneux, Trapped modes and edge resonances in acoustics and elasticity, Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism, pp.181-223, 2013.

R. Porter and J. N. Newman, Cloaking of a vertical cylinder in waves using variable bathymetry, J. Fluid Mech, vol.750, pp.124-143, 2014.

A. F. Sadreev, E. N. Bulgakov, and I. Rotter, Bound states in the continuum in open quantum billiards with a variable shape, Phys. Rev. B, vol.73, issue.23, p.235342, 2006.

F. , Trapping modes in the theory of surface waves, Proc. Camb. Philos. Soc, vol.47, pp.347-358, 1951.