
HAL Id: hal-01647873
https://univ-lemans.hal.science/hal-01647873

Submitted on 11 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NMTPY: A Flexible Toolkit for Advanced Neural
Machine Translation Systems

Ozan Caglayan, Mercedes Garcia-Martinez, Adrien Bardet, Walid Aransa,
Fethi Bougares, Loïc Barrault

To cite this version:
Ozan Caglayan, Mercedes Garcia-Martinez, Adrien Bardet, Walid Aransa, Fethi Bougares, et al..
NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems. The Prague Bulletin
of Mathematical Linguistics, 2017, 109 (1), �10.1515/pralin-2017-0035�. �hal-01647873�

https://univ-lemans.hal.science/hal-01647873
https://hal.archives-ouvertes.fr

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017 15–28

NMTPY: A Flexible Toolkit for Advanced Neural Machine
Translation Systems

Ozan Caglayan, Mercedes García-Martínez, Adrien Bardet, Walid Aransa,
Fethi Bougares, Loïc Barrault

Laboratoire d’Informatique de l’Université du Maine (LIUM)

Abstract
In this paper, we present nmtpy, a flexible Python toolkit based on Theano for training Neu-

ral Machine Translation and other neural sequence-to-sequence architectures. nmtpy decouples
the specification of a network from the training and inference utilities to simplify the addition
of a new architecture and reduce the amount of boilerplate code to be written. nmtpy has been
used for LIUM’s top-ranked submissions to WMT Multimodal Machine Translation and News
Translation tasks in 2016 and 2017.

1. Introduction

nmtpy is a refactored, extended and Python 3 only version of dl4mt-tutorial1, a
Theano (Theano Development Team, 2016) implementation of attentive Neural Ma-
chine Translation (NMT) (Bahdanau et al., 2014). The development of nmtpy project
which has been open-sourced2 under MIT license in March 2017, started in March
2016 as an effort to adapt dl4mt-tutorial to multimodal translation models. nmtpy has
now become a powerful toolkit where adding a new model is as simple as deriving
from an abstract base class, implementing a set of its methods and writing a custom
data iterator if necessary. The training and inference utilities are as model-agnostic

1https://github.com/nyu-dl/dl4mt-tutorial

2https://github.com/lium-lst/nmtpy

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: ozancag@gmail.com
Cite as: Ozan Caglayan, Mercedes García-Martínez, Adrien Bardet, Walid Aransa, Fethi Bougares, Loïc Barrault.
NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems. The Prague Bulletin of Mathematical
Linguistics No. 109, 2017, pp. 15–28. doi: 10.1515/pralin-2017-0035.

Unauthenticated
Download Date | 1/11/18 2:26 PM

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 109 OCTOBER 2017

as possible allowing one to use them for different sequence generation networks such
as multimodal NMT and image captioning to name a few.

Other prominent toolkits in the field are OpenNMT (Klein et al., 2017), Neural
Monkey (Helcl and Libovický, 2017) and Nematus (Sennrich et al., 2017). While nmtpy
and Nematus share the same dl4mt-tutorial codebase, the flexibility and the rich set of
architectures (Section 3) are what differentiate our toolkit from Nematus. Both Open-
NMT and Nematus are solely focused on translation by providing feature-rich but
monolithic NMT implementations. Neural Monkey which is based on TensorFlow
(Abadi et al., 2016), provides a more generic sequence-to-sequence learning frame-
work similar to nmtpy.

2. Design

In this section we first give an overview of a typical NMT training session in nmtpy
and the design of the translation utility nmt-translate. We then describe the configu-
ration file format, explain how to define new architectures and finally introduce the
basic deep learning elements and techniques provided by nmtpy. A more detailed
tutorial about training an NMT model is available on Github 3.

2.1. Training

A training experiment (Figure 1) is launched by providing an INI-style experiment
configuration file to nmt-train (Listing 1). nmt-train then automatically selects a free
GPU, sets the seed for NumPy and Theano random number generators, constructs
an informative filename for log files and model checkpoints and finally instantiates
a Python object of type "model_type" given through the configuration file. The tasks
of data loading, weight initialization and graph construction are all delegated to this
model instance.
$ nmt-train -c en-de.conf # Launch an experiment
$ nmt-train -c en-de.conf 'model_type:new_nmt' # Override model_type
$ nmt-train -c en-de.conf 'rnn_dim:500' 'embedding_dim:300' # Change dimensions
$ nmt-train -c en-de.conf 'device_id:gpu5' # Force specific GPU device

Listing 1. Example usages of nmt-train.

During training, nmt-train consumes mini-batches of data from the model’s iterator
and performs forward/backward passes along with the weight updates. Translation
performance on a held-out corpus is periodically evaluated in order to early-stop the
training process to avoid overfitting. These periodic evaluations are realized by calling
nmt-translate which performs beam-search, computes metrics and returns them back
to nmt-train.

3https://github.com/lium-lst/wmt17-mmt

16

Unauthenticated
Download Date | 1/11/18 2:26 PM

O. Caglayan et al. NMTPY (15–28)

nmt-train nmt-translate
(beam search)

model: NMT
lrate: 0.1
 eval: BLEU
 data: ...

 ...

Experiment
Configuration

Evaluation
Metrics

METEOR

BLEU

External

...

Model
Definitions

PKL

Text

BiText
...

Data
Iterators

Periodic

Evaluation

NMT
MNMT

FNMT

...

Figure 1. The workflow of a training experiment.

2.2. Translation

nmt-translate performs translation decoding using a beam-search implementation
that supports single and ensemble decoding for both monomodal and multimodal
translation models (Listing 2).

Since the number of CPUs in a single machine is 2x-4x higher than the number of
GPUs and we mainly reserve the GPUs for training, nmt-translate makes use of CPU
workers for maximum efficiency. More specifically, each worker receives a model in-
stance (or instances when ensembling) and performs the beam-search on samples that
it continuously fetches from a shared queue filled by the master process. One thing
to note for parallel CPU decoding is that if the installed NumPy is linked against a
BLAS implementation with threading support enabled (as in the case with Anaconda
& Intel MKL), each spawned process attempts to use all available threads in the ma-
chine leading to a resource conflict. In order for nmt-translate to benefit correctly from
parallelism, the number of threads per process should thus be limited to one 4. The
impact of this setting and the overall decoding speed in terms of words/sec (wps) are
reported in Table 1 for a medium-sized En→Tr NMT with ∼10M parameters.
Decode on 30 CPUs with beam size 10, compute BLEU/METEOR
$ nmt-translate -j 30 -b 10 -M bleu meteor -m model.npz -S val.bpe.en -R val.de -o out.de
Generate 50-best list with an ensemble of checkpoints
$ nmt-translate -b 50 -N 50 -m model*npz -S val.tok.de -o out.tok.50best.de

Listing 2. Example usages of nmt-translate.

4This is achieved by setting X_NUM_THREADS=1 environment variable where X is one of OPENBLAS,OMP,MKL
depending on the NumPy installation.

17

Unauthenticated
Download Date | 1/11/18 2:26 PM

PBML 109 OCTOBER 2017

BLAS Threads Tesla K40 4 CPU 8 CPU 16 CPU

Default 185 wps 25 wps 25 wps 25 wps
Set to 1 185 wps 109 wps 198 wps 332 wps

Table 1. Median beam-search speed over 3 runs with beam size 12: decoding on a single
Tesla K40 GPU is roughly equivalent to using 8 CPUs (Intel Xeon E5-2687v3).

2.3. Configuration

Each nmtpy experiment is defined with an INI-style configuration file that has four
mandatory sections, namely [training], [model], [model.dicts] and [model.data].
Each section may contain a number of options in key:value format where the value
can be built-in Python data types like integer, float, boolean, string, list, etc. Paths
starting with a tilde are automatically expanded to $HOME folder.

The options defined in the [training] section are consumed by nmt-train while
the ones in the [model.*] sections are automatically passed to the model instance
(specifically, to its __init__() method) created by nmt-train. This allows one to add
a new key:value option to the configuration file and access it automatically from the
model instance.

Any option defined in the configuration file can be overridden through the com-
mand line by passing new key:value pair as the last argument to nmt-train (Listing 1).
The common defaults defined in nmtpy/defaults.py are shortly described in Table 2.
A complete configuration example is provided in Appendix A.

2.4. Defining New Architectures

A new architecture can be defined by creating a new file (i.e. my_amazing_nmt.py)
under nmtpy/models, defining a new Model class derived from BaseModel and imple-
menting 5 the set of methods detailed below:

• __init__(): Instantiates a model. Keyword arguments can be used to gather
model specific options from the configuration file.

• init_params(): Initializes the layers and their weights.
• build(): Defines the computation graph for training.
• build_sampler(): Defines the computation graph for beam-search. This is sim-

ilar to build() except two additional Theano functions.
• load_valid_data(): Loads the validation data for perplexity computation.
• load_data(): Loads the training data.

5The NMT architecture defined in attention.py can generally be used as a skeleton code when devel-
oping new architectures.

18

Unauthenticated
Download Date | 1/11/18 2:26 PM

O. Caglayan et al. NMTPY (15–28)

2.5. Building Blocks

Initialization Weight initialization is governed by the weight_init option and sup-
ports Xavier (Glorot and Bengio, 2010), He (He et al., 2015), orthogonal (Saxe et al.,
2013) and random normal initializations.

Regularization An inverse-mode (the magnitudes are scaled during training in-
stead of testing) dropout (Srivastava et al., 2014) can be applied over any tensor. L2

weight regularization with a scalar factor given by decay_c option is also provided.

Option Value Description

[training] options
init None/<.npz file> Pretrained checkpoint to initialize the weights.

device_id auto/cpu/gpu<int> Select training device automatically or manually.
seed 1234 The seed for Theano and NumPy RNGs.

clip_c 5.0 Gradient norm clipping threshold.
decay_c 0.0 L2 regularization factor.
patience 10 Early-stopping patience.

patience_delta 0.0 Absolute difference of early-stopping metric
that will be taken into account as an improvement.

max_epochs 100 Maximum number of epochs for training.
max_iteration 1e6 Maximum number of updates for training.
valid_metric bleu/meteor/px Validation metric(s) (separated by comma) to be

printed, first being the early-stopping metric.
valid_start 1 Start validation after this number of epochs finished.
valid_freq 0 0 means validations occur at end of epochs while

an explicit <int> defines the period in terms of updates.
valid_njobs 16 Number of CPUs to use during validation beam-search.
valid_beam 12 The size of the beam during validation beam-search.

valid_save_hyp False/True Dumps validation hypotheses to separate text files.
disp_freq 10 The frequency of logging in terms of updates.

save_best_n 4 Save 4 best models on-disk based on validation metric
for further ensembling.

[model] options
weight_init xavier/he/<float> Weight initialization method or a <float> to define

the scale of random normal distribution.
batch_size 32 Mini-batch size for training.
optimizer adam/adadelta/ Stochastic optimizer to use for training.

sgd/rmsprop
lrate None/<float> If given, overrides the optimizer default defined

in nmtpy/optimizers.py.

Table 2. Description of options and their default values: when the number of possible
values is finite, the default is written in bold.

19

Unauthenticated
Download Date | 1/11/18 2:26 PM

PBML 109 OCTOBER 2017

Layers Feed-forward layer, highway layer (Srivastava et al., 2015), Gated Recurrent
Unit (GRU) (Chung et al., 2014) Conditional GRU (CGRU) (Firat and Cho, 2016) and
Multimodal CGRU (Caglayan et al., 2016a,b) are currently available for architecture
design. Layer normalization (Ba et al., 2016), a method that adaptively learns to scale
and shift the incoming activations of a neuron is available for GRU and CGRU blocks.

Iteration Parallel and monolingual text iterators with compressed (.gz, .bz2, .xz) file
support are available under the names TextIterator and BiTextIterator. Addition-
ally, the multimodal WMTIterator allows using image features and source/target sen-
tences at the same time for multimodal NMT (Section 3.3). An efficient target length
based batch sorting is available with the option shuffle_mode:trglen.

Training nmtpy provides Theano implementations of stochastic gradient descent
(SGD) and its adaptive variants RMSProp (Tieleman and Hinton, 2012), Adadelta
(Zeiler, 2012) and Adam (Kingma and Ba, 2014) to optimize the weights of the trained
network. A preliminary support for gradient noise (Neelakantan et al., 2015) is avail-
able for Adam. Gradient norm clipping (Pascanu et al., 2013) is enabled by default
with a threshold of 5 to avoid exploding gradients. Although the provided architec-
tures all use the cross-entropy objective by their nature, any arbitrary differentiable
objective function can be used since the training loop is agnostic to the architecture
being trained.

Post-processing All decoded translations will be post-processed if filter option is
given in the configuration file. This is useful in the case where one would like to
compute automatic metrics on surface forms instead of segmented. Currently avail-
able filters are bpe and compound for cleaning subword BPE (Sennrich et al., 2016) and
German compound-splitting (Sennrich and Haddow, 2015) respectively.

Metrics nmt-train performs a patience based early-stopping using either validation
perplexity or one of the automatic metric wrappers i.e. BLEU (Papineni et al., 2002) or
METEOR (Lavie and Agarwal, 2007). These metrics are also available for nmt-translate
to immediately score the produced hypotheses. Other metrics can be easily added and
made available as early-stopping metrics.

3. Architectures

3.1. Neural Machine Translation (NMT)

The NMT architecture (attention) is based on dl4mt-tutorial which differs from
Bahdanau et al. (2014) in the following major aspects:

20

Unauthenticated
Download Date | 1/11/18 2:26 PM

O. Caglayan et al. NMTPY (15–28)

• The decoder is CGRU (Firat and Cho, 2016) which consists of two GRU inter-
leaved with attention mechanism,

• The hidden state of the decoder is initialized with a non-linear transformation
applied to mean bi-directional encoder state instead of last one,

• Maxout (Goodfellow et al., 2013) layer before the softmax operation is removed.

Option Value(s) (default) Description

init_cgru zero (text) Initializes CGRU with zero instead of mean encoder state
(García-Martínez et al., 2017).

tied_emb 2way/3way (False) Allows 2way and 3way sharing of embeddings in the network
(Inan et al., 2016; Press and Wolf, 2016).

shuffle_mode simple (trglen) Switch between simple and target-length ordered shuffling.
layer_norm bool (False) Enable/disable layer normalization for GRU encoder.

simple_output bool (False) Condition target probability only on decoder’s hidden state
(García-Martínez et al., 2017).

n_enc_layers int (1) Number of unidirectional encoders to stack on top
of the bi-directional encoder.

emb_dropout float (0) Rate of dropout applied on source embeddings.
ctx_dropout float (0) Rate of dropout applied on source encoder states.
out_dropout float (0) Rate of dropout applied on pre-softmax activations.

Table 3. Description of configuration options for the NMT architecture.

The final NMT architecture offers many new options which are shortly explained
in Table 3. We also provide a set of auxiliary tools which are useful for pre-processing
and post-training tasks (Table 4).

Tool Description

nmt-bpe-* Clone of subword utilities for BPE processing (Sennrich et al., 2016).
nmt-build-dict Generates .pkl vocabulary files from corpora prior to training.

nmt-rescore Rescores n-best hypotheses with single/ensemble of models on GPU.
nmt-coco-metrics Computes several metrics using MSCOCO evaluation tools (Chen et al., 2015).

nmt-extract Extracts and saves weights from a trained model instance.

Table 4. Brief descriptions of helper NMT tools.

3.2. Factored NMT (FNMT)

Factored NMT (FNMT) is an extension of NMT which generates two output sym-
bols (García-Martínez et al., 2016). In contrast to multi-task architectures, FNMT out-
puts share the same recurrence and output symbols are generated in a synchronous

21

Unauthenticated
Download Date | 1/11/18 2:26 PM

PBML 109 OCTOBER 2017

fashion. Two variants which differ in how they handle the output layer are currently
available: (attention_factors) where the lemma and factor embeddings are con-
catenated to form a single feedback embedding and (attention_factors_seplogits)
where the output path for lemmas and factors are kept separate with different pre-
softmax transformations applied for specialization.

3.3. Multimodal NMT (MNMT)

We provide several multimodal architectures where the probability of a target
word is estimated given source sentence representations and visual features: (1) Fu-
sion architectures (Caglayan et al., 2016a,b) extend monomodal CGRU into a multi-
modal one where a multimodal attention is applied over textual and visual features,
(2) MNMT architectures based on global features make use of fixed-width visual fea-
tures to ground NMT with visual informations (Caglayan et al., 2017).

3.4. Other

• A GRU-based reimplementation (img2txt) of Show, Attend and Tell image cap-
tioning architecture (Xu et al., 2015),

• A GRU-based language model architecture (rnnlm) to train recurrent language
models. nmt-test-lm is the inference utility for perplexity computation of a cor-
pus using a trained checkpoint.

4. Results

System MMT Test2017 Meteor (Rank)

NMT En→De 53.8 (#3)
MNMT En→De 54.0 (#1)

NMT En→Fr 70.1 (#4)
MNMT En→Fr 72.1 (#1)

System News Test2017 BLEU

NMT-UEDIN (Winner) En→Tr 16.5
NMT-Ours (Post-deadline) En→Tr 18.1

FNMT En→Lv 16.2
FNMT En→Cs 19.9

Table 5. Ensembling scores for LIUM’s WMT17 MMT and News Translation submissions.

22

Unauthenticated
Download Date | 1/11/18 2:26 PM

O. Caglayan et al. NMTPY (15–28)

System Test2017 BLEU Test2017 METEOR

Nmtpy 30.8 ± 1.0 51.6 ± 0.5
Nematus 31.6 50.6

Table 6. Mean/std. deviation of 5 Nmtpy runs vs 1 Nematus run for WMT17 MMT En→De.

We present our submitted nmtpy systems for Multimodal Translation (MMT) and
News Translation tasks of WMT17 (Table 5). For MMT, state-of-the-art results are
obtained by our systems (Caglayan et al., 2017)6 in both En→De and En→Fr tracks
(Elliott et al., 2017). In the context of news translation task, our post-deadline En→Tr
NMT system (García-Martínez et al., 2017) surpassed the official winner by 1.6 BLEU.

We also trained a monomodal NMT for WMT17 MMT En→De track with Nematus
using hyper-parameters very similar to our submitted NMT architecture and found
that the results are comparable for BLEU and slightly better for nmtpy in terms of
METEOR (Table 6).

5. Conclusion

We have presented nmtpy, an open-source sequence-to-sequence framework based
on dl4mt-tutorial and refined in many ways to ease the task of integrating new ar-
chitectures. The toolkit has been internally used in our team for tasks ranging from
monomodal, multimodal and factored NMT to image captioning and language mod-
eling to achieve top-ranked campaign results and state-of-the-art performance.

Acknowledgements

This work was supported by the French National Research Agency (ANR) through
the CHIST-ERA M2CR project, under the contract number ANR-15-CHR2-0006-017.

Bibliography

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

6http://github.com/lium-lst/wmt17-mmt

7http://m2cr.univ-lemans.fr

23

Unauthenticated
Download Date | 1/11/18 2:26 PM

PBML 109 OCTOBER 2017

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.
org/abs/1409.0473.

Caglayan, Ozan, Walid Aransa, Yaxing Wang, Marc Masana, Mercedes García-Martínez, Fethi
Bougares, Loïc Barrault, and Joost van de Weijer. Does Multimodality Help Human and
Machine for Translation and Image Captioning? In Proceedings of the First Conference on
Machine Translation, pages 627–633, Berlin, Germany, August 2016a. Association for Com-
putational Linguistics. URL http://www.aclweb.org/anthology/W/W16/W16-2358.pdf.

Caglayan, Ozan, Loïc Barrault, and Fethi Bougares. Multimodal Attention for Neural Ma-
chine Translation. arXiv preprint arXiv:1609.03976, 2016b. URL http://arxiv.org/abs/
1609.03976.

Caglayan, Ozan, Walid Aransa, Adrien Bardet, Mercedes García-Martínez, Fethi Bougares, Loïc
Barrault, Marc Masana, Luis Herranz, and Joost van de Weijer. LIUM-CVC Submissions for
WMT17 Multimodal Translation Task. In Proceedings of the Second Conference on Machine
Translation, Copenhagen, Denmark, September 2017.

Chen, Xinlei, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár,
and C Lawrence Zitnick. Microsoft COCO captions: Data collection and evaluation server.
arXiv preprint arXiv:1504.00325, 2015.

Chung, Junyoung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evalu-
ation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR, abs/1412.3555,
2014. URL http://arxiv.org/abs/1412.3555.

Elliott, Desmond, Stella Frank, Loïc Barrault, Fethi Bougares, and Lucia Specia. Findings of the
Second Shared Task on Multimodal Machine Translation and Multilingual Image Descrip-
tion. In Proceedings of the Second Conference on Machine Translation, Copenhagen, Denmark,
September 2017.

Firat, Orhan and Kyunghyun Cho. Conditional Gated Recurrent Unit with Attention Mecha-
nism. github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf, 2016.

García-Martínez, Mercedes, Loïc Barrault, and Fethi Bougares. Factored Neural Machine Trans-
lation Architectures. In Proceedings of the International Workshop on Spoken Language Trans-
lation, IWSLT’16, Seattle, USA, 2016. URL http://workshop2016.iwslt.org/downloads/
IWSLT_2016_paper_2.pdf.

García-Martínez, Mercedes, Ozan Caglayan, Walid Aransa, Adrien Bardet, Fethi Bougares, and
Loïc Barrault. LIUM Machine Translation Systems for WMT17 News Translation Task. In
Proceedings of the Second Conference on Machine Translation, Copenhagen, Denmark, Septem-
ber 2017.

Glorot, Xavier and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256.
PMLR, 13–15 May 2010. URL http://proceedings.mlr.press/v9/glorot10a.html.

Goodfellow, Ian, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
Maxout Networks. In Dasgupta, Sanjoy and David McAllester, editors, Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine

24

Unauthenticated
Download Date | 1/11/18 2:26 PM

O. Caglayan et al. NMTPY (15–28)

Learning Research, pages 1319–1327, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
http://proceedings.mlr.press/v28/goodfellow13.html.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers: Sur-
passing Human-Level Performance on ImageNet Classification. In Computer Vision (ICCV),
2015 IEEE International Conference on, pages 1026–1034. IEEE, 2015.

Helcl, Jindřich and Jindřich Libovický. Neural Monkey: An Open-source Tool for Se-
quence Learning. The Prague Bulletin of Mathematical Linguistics, (107):5–17, 2017. ISSN
0032-6585. doi: 10.1515/pralin-2017-0001. URL http://ufal.mff.cuni.cz/pbml/107/
art-helcl-libovicky.pdf.

Inan, Hakan, Khashayar Khosravi, and Richard Socher. Tying Word Vectors and Word Classi-
fiers: A Loss Framework for Language Modeling. arXiv preprint arXiv:1611.01462, 2016.

Kingma, Diederik and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Klein, G., Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-Source Toolkit for
Neural Machine Translation. ArXiv e-prints, 2017.

Lavie, Alon and Abhaya Agarwal. Meteor: An Automatic Metric for MT Evaluation with High
Levels of Correlation with Human Judgments. In Proceedings of the Second Workshop on Sta-
tistical Machine Translation, StatMT ’07, pages 228–231, Stroudsburg, PA, USA, 2007. Associ-
ation for Computational Linguistics. URL http://dl.acm.org/citation.cfm?id=1626355.
1626389.

Neelakantan, Arvind, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding gradient noise improves learning for very deep networks. arXiv
preprint arXiv:1511.06807, 2015. URL http://arxiv.org/abs/1511.06807.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method for Au-
tomatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
http://dx.doi.org/10.3115/1073083.1073135.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. On the Difficulty of Training Recurrent
Neural Networks. In Proceedings of the 30th International Conference on International Conference
on Machine Learning - Volume 28, ICML’13, pages III–1310–III–1318. JMLR.org, 2013. URL
http://dl.acm.org/citation.cfm?id=3042817.3043083.

Press, Ofir and Lior Wolf. Using the output embedding to improve language models. arXiv
preprint arXiv:1608.05859, 2016.

Saxe, Andrew M, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Sennrich, Rico and Barry Haddow. A Joint Dependency Model of Morphological and Syntactic
Structure for Statistical Machine Translation. In Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, pages 114–121. Association for Computational
Linguistics, 2015.

25

Unauthenticated
Download Date | 1/11/18 2:26 PM

PBML 109 OCTOBER 2017

Sennrich, Rico, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare
Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany, August
2016. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P16-1162.

Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch-Mayne, Barry Haddow, Julian
Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Miceli Barone, Jozef Mokry,
and Maria Nadejde. Nematus: a Toolkit for Neural Machine Translation, pages 65–68. Associa-
tion for Computational Linguistics (ACL), 4 2017. ISBN 978-1-945626-34-0.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn.
Res., 15(1):1929–1958, Jan. 2014. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?
id=2627435.2670313.

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

Theano Development Team. Theano: A Python framework for fast computation of mathemat-
ical expressions. arXiv e-prints, abs/1605.02688, 2016. URL http://arxiv.org/abs/1605.
02688.

Tieleman, Tijmen and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 2012.

Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention. In Proceedings of the 32nd International Conference on Machine Learn-
ing (ICML-15), pages 2048–2057. JMLR Workshop and Conference Proceedings, 2015. URL
http://jmlr.org/proceedings/papers/v37/xuc15.pdf.

Zeiler, Matthew D. ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

26

Unauthenticated
Download Date | 1/11/18 2:26 PM

O. Caglayan et al. NMTPY (15–28)

Appendix A: Example NMT Configuration

Options in this section are consumed by nmt-train
[training]
model_type: attention # Model type without .py
patience: 20 # early-stopping patience
valid_freq: 1000 # Compute metrics each 1000 updates
valid_metric: meteor # Use meteor during validations
valid_start: 2 # Start validations after 2nd epoch
valid_beam: 3 # Decode with beam size 3
valid_njobs: 16 # Use 16 processes for beam-search
valid_save_hyp: True # Save validation hypotheses
decay_c: 1e-5 # L2 regularization factor
clip_c: 5 # Gradient clip threshold
seed: 1235 # Seed for numpy and Theano RNG
save_best_n: 2 # Keep 2 best models on-disk
device_id: auto # Pick 1st available GPU
max_epochs: 100

Options in this section are passed to model instance
[model]
tied_emb: 2way # weight-tying mode (False,2way,3way)
layer_norm: True # layer norm in GRU encoder
shuffle_mode: trglen # Shuffled/length-ordered batches
filter: bpe # post-processing filter(s)
n_words_src: 0 # limit src vocab if > 0
n_words_trg: 0 # limit trg vocab if > 0
save_path: ~/models # Where to store checkpoints
rnn_dim: 100 # Encoder and decoder RNN dim
embedding_dim: 100 # All embedding dim
weight_init: xavier
batch_size: 32
optimizer: adam
lrate: 0.0004
emb_dropout: 0.2 # Set dropout rates
ctx_dropout: 0.4
out_dropout: 0.4

Vocabulary paths produced by nmt-build-dict
[model.dicts]
src: ~/data/train.norm.max50.tok.lc.bpe.en.pkl
trg: ~/data/train.norm.max50.tok.lc.bpe.de.pkl

Training and validation data
[model.data]
train_src : ~/data/train.norm.max50.tok.lc.bpe.en
train_trg : ~/data/train.norm.max50.tok.lc.bpe.de
valid_src : ~/data/val.norm.tok.lc.bpe.en
valid_trg : ~/data/val.norm.tok.lc.bpe.de # BPE refs for validation perplexity
valid_trg_orig: ~/data/val.norm.tok.lc.de # non-BPE refs for correct metric computation

27

Unauthenticated
Download Date | 1/11/18 2:26 PM

PBML 109 OCTOBER 2017

Appendix B: Installation

nmtpy requires a Python 3 environment with NumPy and Theano v0.9 installed. A
Java runtime (java should be in the PATH) is also needed by the METEOR implemen-
tation. You can run the below commands in the order they are given to install nmtpy
into your Python environment:
1. Clone the repository
$ git clone https://github.com/lium-lst/nmtpy.git

2. Download METEOR paraphrase data files
$ cd nmtpy; scripts/get-meteor-data.sh

3. Install nmtpy
$ python setup.py install

Note that once you installed nmtpy with python setup.py install, any modifica-
tions to the source tree will not be visible until nmtpy is reinstalled. If you would like
to avoid this because you are constantly modifying the source code (for adding new
architectures, iterators, features), you can replace the last command above by python
setup.py develop. This tells the Python interpreter to directly use nmtpy from the
GIT folder. The final alternative is to copy scripts/snaprun into your $PATH, modify
it to point to your GIT folder and launch training using it as in below:
$ which snaprun
/usr/local/bin/snaprun

Creates a snapshot of nmtpy under /tmp and uses it
$ snaprun nmt-train -c wmt17-en-de.conf

Performance In order to get the best speed in terms of training and beam-search, we
recommend using a recent version of CUDA, CuDNN and a NumPy linked against
Intel MKL8 or OpenBLAS.

Address for correspondence:
Ozan Caglayan
ozancag@gmail.com
Laboratoire d’Informatique de l’Université du Maine (LIUM)
Avenue Laënnec 72085
Le Mans, France

8Anaconda Python distribution is a good option which already ships an MKL-enabled NumPy.

28

Unauthenticated
Download Date | 1/11/18 2:26 PM

	Introduction
	Design
	Training
	Translation
	Configuration
	Defining New Architectures
	Building Blocks

	Architectures
	Neural Machine Translation (NMT)
	Factored NMT (FNMT)
	Multimodal NMT (MNMT)
	Other

	Results
	Conclusion

