S. Bibliographical-references-bengio and G. Heigold, Word embeddings for speech recognition, INTERSPEECH, pp.1053-1057, 2014.

H. Bonneau-maynard, S. Rosset, C. Ayache, A. Kuhn, and D. Mostefa, Semantic annotation of the french media dialog corpus, Ninth European Conference on Speech Communication and Technology, 2005.

O. Caglayan, M. García-martínez, A. Bardet, W. Aransa, F. Bougares et al., Nmtpy: A flexible toolkit for advanced neural machine translation systems. arXiv preprint, 2017.
DOI : 10.1515/pralin-2017-0035

URL : https://hal.archives-ouvertes.fr/hal-01647873

K. Cho, B. Van-merrienboer, C. Gulcehre, F. Bougares, H. Schwenk et al., Learning Phrase Representations using RNN Encoder???Decoder for Statistical Machine Translation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
DOI : 10.3115/v1/D14-1179

URL : https://hal.archives-ouvertes.fr/hal-01433235

D. Mori, R. Bechet, F. Hakkani-tur, D. Mctear, M. Riccardi et al., Spoken language understanding, IEEE Signal Processing Magazine, vol.25, issue.3, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01314884

D. Mori and R. , Spoken language understanding: A survey, Automatic Speech Recognition & Understanding, pp.365-376, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01314884

E. Fosler-lussier, I. Amdal, and H. J. Kuo, On the road to improved lexical confusability metrics, ISCA Tutorial and Research Workshop (ITRW) on Pronunciation Modeling and Lexicon Adaptation for Spoken Language Technology, 2002.

S. Ghannay, B. Favre, Y. Esteve, C. , and N. , Word embedding evaluation and combination, of the Language Resources and Evaluation Conference Portoroz (Slovenia), pp.23-28, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01433185

S. Hahn, M. Dinarelli, C. Raymond, F. Lefevre, P. Lehnen et al., Comparing Stochastic Approaches to Spoken Language Understanding in Multiple Languages, IEEE Transactions on Audio, Speech, and Language Processing, vol.19, issue.6, pp.1569-1583, 2011.
DOI : 10.1109/TASL.2010.2093520

URL : https://hal.archives-ouvertes.fr/hal-00746965

D. Hakkani-tür, G. Tur, A. Celikyilmaz, Y. Chen, J. Gao et al., Multidomain joint semantic frame parsing using bi-directional rnn-lstm, Proceedings of The 17th Annual Meeting of the International Speech Communication Association, 2016.

C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, The ATIS spoken language systems pilot corpus, Proceedings of the workshop on Speech and Natural Language , HLT '90, pp.96-101, 1990.
DOI : 10.3115/116580.116613

P. Jyothi and E. Fosler-lussier, Discriminative language modeling using simulated asr errors, Eleventh Annual Conference of the International Speech Communication Association, 2010.

J. Lafferty, A. Mccallum, and F. Pereira, Conditional random fields: Probabilistic models for segmenting and labeling sequence data, Proceedings of the eighteenth international conference on machine learning , ICML, pp.282-289, 2001.

T. Lavergne, O. Cappé, and F. Yvon, Practical very large scale CRFs, Proceedings the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pp.504-513, 2010.

O. Levy and Y. Goldberg, Dependency-Based Word Embeddings, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.302-308, 2014.
DOI : 10.3115/v1/P14-2050

G. Mesnil, Y. Dauphin, K. Yao, Y. Bengio, L. Deng et al., Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding, Speech and Language Processing (TASLP), pp.530-539, 2015.
DOI : 10.1109/TASLP.2014.2383614

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, Proceedings of Workshop at ICLR, 2013.

O. Pietquin and R. Beaufort, Comparing asr modeling methods for spoken dialogue simulation and optimal strategy learning, Ninth European Conference on Speech Communication and Technology, 2005.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek et al., The kaldi speech recognition toolkit, IEEE 2011 workshop on automatic speech recognition and understanding, p.192584, 2011.

C. Raymond, F. Bechet, R. De-mori, and G. Damnati, On the use of finite state transducers for semantic interpretation, Speech Communication, vol.48, issue.3-4, pp.288-304, 2006.
DOI : 10.1016/j.specom.2005.06.012

URL : https://hal.archives-ouvertes.fr/hal-01314627

A. Rousseau, G. Boulianne, P. Deléglise, Y. Estève, V. Gupta et al., LIUM and CRIM ASR System Combination for??the??REPERE Evaluation Campaign, International Conference on Text, Speech, and Dialogue, pp.441-448, 2014.
DOI : 10.1007/978-3-319-10816-2_53

URL : https://hal.archives-ouvertes.fr/hal-01450629

R. Sarikaya, G. E. Hinton, and A. Deoras, Application of Deep Belief Networks for Natural Language Understanding, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.22, issue.4, pp.778-784, 2014.
DOI : 10.1109/TASLP.2014.2303296

J. Schatzmann, B. Thomson, Y. , and S. , Error simulation for training statistical dialogue systems, 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU), 2007.
DOI : 10.1109/ASRU.2007.4430167

URL : http://mi.eng.cam.ac.uk/~brmt2/papers/schatzmann07asru.pdf

E. Simonnet, S. Ghannay, N. Camelin, Y. Esteve, R. et al., ASR Error Management for Improving Spoken Language Understanding, Interspeech 2017, 2017.
DOI : 10.21437/Interspeech.2017-1178

URL : https://hal.archives-ouvertes.fr/hal-01526298

M. Stuttle, J. Williams, Y. , and S. , A framework for dialog systems data collection using a simulated asr channel, 2004.

V. Vukotic, C. Raymond, and G. Gravier, Is it time to switch to word embedding and recurrent neural networks for spoken language understanding? In Inter- Speech, 2015.