LIUM Machine Translation Systems for WMT17 News Translation Task

Abstract : This paper describes LIUM submissions to WMT17 News Translation Task for English↔German, English↔Turkish, English→Czech and English→Latvian language pairs. We train BPE-based attentive Neural Machine Translation systems with and without factored outputs using the open source nmtpy framework. Competitive scores were obtained by en-sembling various systems and exploiting the availability of target monolingual corpora for back-translation. The impact of back-translation quantity and quality is also analyzed for English→Turkish where our post-deadline submission surpassed the best entry by +1.6 BLEU.
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal-univ-lemans.archives-ouvertes.fr/hal-01742378
Contributeur : Mercedes Garcia-Martinez <>
Soumis le : lundi 26 mars 2018 - 11:36:51
Dernière modification le : vendredi 26 avril 2019 - 13:54:02
Document(s) archivé(s) le : jeudi 13 septembre 2018 - 08:05:04

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01742378, version 1

Collections

Citation

Mercedes Garcia-Martinez, Ozan Caglayan, Walid Aransa, Adrien Bardet, Fethi Bougares, et al.. LIUM Machine Translation Systems for WMT17 News Translation Task. Second Conference on Machine Translation, 2017, Copenhagen, Denmark. pp.288 - 295. ⟨hal-01742378⟩

Partager

Métriques

Consultations de la notice

96

Téléchargements de fichiers

123