J. A. Vrugt, C. J. Ter-braak, M. P. Clark, J. M. Hyman, and B. A. Robinson, Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resources Research, vol.33, issue.3, pp.0-09, 2007006720.
DOI : 10.1029/2006GL027126

T. Haire and C. Langton, Biot theory: a review of its application to ultrasound propagation through cancellous bone, Bone, vol.24, issue.4, pp.291-29510, 1999.
DOI : 10.1016/S8756-3282(99)00011-3

J. Allard and N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e, pp.10-1002, 2009.

M. A. Biot, Theory of Propagation of Elastic Waves in a Fluid???Saturated Porous Solid. I. Low???Frequency Range, The Journal of the Acoustical Society of America, vol.28, issue.2, pp.168-178, 1956.
DOI : 10.1121/1.1908239

URL : https://hal.archives-ouvertes.fr/hal-01368668

M. A. Biot, Theory of Propagation of Elastic Waves in a Fluid???Saturated Porous Solid. II. Higher Frequency Range, The Journal of the Acoustical Society of America, vol.28, issue.2, pp.179-191, 1956.
DOI : 10.1121/1.1908241

URL : https://hal.archives-ouvertes.fr/hal-01368668

M. A. Biot, Mechanics of Deformation and Acoustic Propagation in Porous Media, Journal of Applied Physics, vol.51, issue.4, pp.1482-1498, 1962.
DOI : 10.1190/1.1438855

URL : https://hal.archives-ouvertes.fr/hal-01368725

M. A. Biot, Generalized Theory of Acoustic Propagation in Porous Dissipative Media, The Journal of the Acoustical Society of America, vol.34, issue.9A, pp.1254-1264, 1962.
DOI : 10.1121/1.1918315

URL : https://hal.archives-ouvertes.fr/hal-01368727

D. L. Johnson, J. Koplik, and R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics, vol.24, issue.-1, pp.379-402, 1987.
DOI : 10.1121/1.388036

Y. Champoux and J. Allard, Dynamic tortuosity and bulk modulus in air???saturated porous media, Journal of Applied Physics, vol.87, issue.4, pp.1975-1979, 1991.
DOI : 10.1121/1.2027977

T. G. Zieli?ski, Normalized inverse characterization of sound absorbing rigid porous media, The Journal of the Acoustical Society of America, vol.137, issue.6, pp.3232-3243, 2015.
DOI : 10.1121/1.4919806

Y. Atalla and R. Panneton, Inverse acoustical characterization of open cell porous media using impedance tube measurements, Canadian Acoustics, vol.33, issue.1, pp.11-24, 2005.

P. Cobo and F. Simón, A comparison of impedance models for the inverse estimation of the non-acoustical parameters of granular absorbers, Applied Acoustics, vol.104, 2016.
DOI : 10.1016/j.apacoust.2015.11.006

T. Hentati, L. Bouazizi, M. Taktak, H. Trabelsi, and M. Haddar, Multi-levels inverse identification of physical parameters of porous materials, Applied Acoustics, vol.108
DOI : 10.1016/j.apacoust.2015.09.013

J. Vanhuyse, E. Deckers, S. Jonckheere, B. Pluymers, and W. Desmet, Global optimisation methods for poroelastic material characterisation using a clamped sample in a kundt tube setup, Mechanical Systems and Signal Processing, pp.68-69, 2016.
DOI : 10.1016/j.ymssp.2015.06.027

Z. E. Fellah, S. Berger, W. Lauriks, C. Depollier, C. Aristegui et al., Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence, The Journal of the Acoustical Society of America, vol.113, issue.5, pp.2424-2433, 2003.
DOI : 10.1121/1.1567275

Z. E. Fellah, S. Berger, W. Lauriks, C. Depollier, P. Trompette et al., Ultrasonic measurement of the porosity and tortuosity of air-saturated random packings of beads, Journal of Applied Physics, vol.322, issue.11, pp.9352-9359, 2003.
DOI : 10.1063/1.363817

Z. E. Fellah, F. G. Mitri, M. Fellah, E. Ogam, and C. Depollier, Ultrasonic characterization of porous absorbing materials: Inverse problem, Journal of Sound and Vibration, vol.302, issue.4-5, pp.746-759, 2007.
DOI : 10.1016/j.jsv.2006.12.007

URL : https://hal.archives-ouvertes.fr/hal-00091325

J. Groby, E. Ogam, L. De-ryck, N. Sebaa, and W. Lauriks, Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients, The Journal of the Acoustical Society of America, vol.127, issue.2, pp.764-772, 2010.
DOI : 10.1121/1.3283043

URL : https://hal.archives-ouvertes.fr/hal-00440830

Z. E. Fellah, M. Sadouki, M. Fellah, F. Mitri, E. Ogam et al., Simultaneous determination of porosity, tortuosity, viscous and thermal characteristic lengths of rigid porous materials, Journal of Applied Physics, vol.114, issue.20
DOI : 10.1190/1.1441123

URL : https://hal.archives-ouvertes.fr/hal-00903319

M. Niskanen, J. Groby, A. Duclos, O. Dazel, J. Le-roux et al., Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements, The Journal of the Acoustical Society of America, vol.142, issue.4, pp.2407-2418, 2017.
DOI : 10.1121/1.5008742

J. Chazot, E. Zhang, and J. Antoni, Acoustical and mechanical characterization of poroelastic materials using a Bayesian approach, The Journal of the Acoustical Society of America, vol.131, issue.6, pp.4584-4595, 2012.
DOI : 10.1121/1.3699236

URL : https://hal.archives-ouvertes.fr/hal-01018735

C. Zwikker and C. W. Kosten, Sound absorbing materials, 1949.

Z. Fellah and C. Depollier, Transient acoustic wave propagation in rigid porous media: A time-domain approach, The Journal of the Acoustical Society of America, vol.107, issue.2, pp.683-688, 2000.
DOI : 10.1121/1.428250

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives: theory and applications 44

F. Monteghetti, D. Matignon, E. Piot, and L. Pascal, Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models, The Journal of the Acoustical Society of America, vol.140, issue.3, pp.1663-1674, 2016.
DOI : 10.1121/1.4962277

URL : https://hal.archives-ouvertes.fr/hal-01530759

B. Gurevich and M. Schoenberg, Interface conditions for Biot???s equations of poroelasticity, The Journal of the Acoustical Society of America, vol.105, issue.5, pp.2585-2589, 1999.
DOI : 10.1121/1.426874

Z. E. Fellah, M. Fellah, W. Lauriks, and C. Depollier, Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material, The Journal of the Acoustical Society of America, vol.113, issue.1, pp.61-72, 2003.
DOI : 10.1121/1.1528592

Z. E. Fellah, F. Mitri, C. Depollier, S. Berger, W. Lauriks et al., Characterization of porous materials with a rigid frame via reflected waves, Journal of Applied Physics, vol.38, issue.12, pp.7914-7922, 2003.
DOI : 10.1016/S0165-2125(03)00045-3

R. C. Smith, Uncertainty quantification: theory, implementation, and applications, 2013.

A. Tarantola, Inverse problem theory and methods for model parameter estimation
DOI : 10.1137/1.9780898717921

W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in practice, 1995.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1700747

URL : https://www.osti.gov/servlets/purl/4390578

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

R. Storn and K. Price, Differential evolution?a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, vol.11, issue.4, pp.341-359, 1997.
DOI : 10.1023/A:1008202821328

C. J. Braak, Genetic algorithms and markov chain monte carlo: Differential evolution markov chain makes bayesian computing easy (revised), 2005.

C. J. Braak, A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces, Statistics and Computing, vol.69, issue.3, pp.239-249, 2006.
DOI : 10.1007/978-1-4757-4145-2

E. Laloy and J. A. Vrugt, High-dimensional posterior exploration of hydrologic models using multipletry dream(zs) and high-performance computing, Water Resour. Res, vol.48, issue.1, pp.1526-1536, 2012.
DOI : 10.1029/2011wr010608

URL : http://onlinelibrary.wiley.com/doi/10.1029/2011WR010608/pdf

A. Gelman and D. B. Rubin, Inference from Iterative Simulation Using Multiple Sequences, Statistical Science, vol.7, issue.4, pp.457-472, 1992.
DOI : 10.1214/ss/1177011136

URL : https://doi.org/10.1214/ss/1177011136

Y. Champoux, M. R. Stinson, and G. A. Daigle, Air???based system for the measurement of porosity, The Journal of the Acoustical Society of America, vol.89, issue.2, pp.910-916, 1991.
DOI : 10.1121/1.1894653

N. Brown, M. Melon, V. Montembault, B. Castagnède, W. Lauriks et al., Evaluation of the viscous characteristic length of air-saturated porous materials from the ultrasonic dispersion curve, Comptes rendus de l'Académie des sciences, pp.122-127, 1996.

P. Leclaire, L. Kelders, W. Lauriks, M. Melon, N. Brown et al., Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air, Journal of Applied Physics, vol.322, issue.4, pp.2009-2012, 1996.
DOI : 10.1121/1.405707

URL : https://hal.archives-ouvertes.fr/hal-01326774

N. Xiang and C. Fackler, Objective bayesian analysis in acoustics, Acoustics Today, vol.11, issue.2, pp.54-61, 2015.

S. R. Pride, F. D. Morgan, and A. F. Gangi, Drag forces of porous-medium acoustics, Physical Review B, vol.51, issue.9, pp.4964-4978, 1993.
DOI : 10.1190/1.1442128