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Abstract10

An approach is presented here to invert surface wave dispersion and attenuation relative11

to the depth-dependence of the visco-elastic parameters of Functionally Graded Materials12

(FGMs). The particularity of this method lies in allowing visco-elastic parameters to vary13

continuously with depth and in properly incorporating the continuous nature of these vari-14

ations into both the forward problem (the calculation of dispersion and attenuation) and15

the inverse problem (evaluation of visco-elastic parameters). The forward problem solves16

the equation of elastic motion using a Runge-Kutta integration scheme, while the inverse17

problem is solved with the nonlinear solution for continuous inverse problems developed18

by Tarantola and Valette (1982). Viscoelasticity is treated as a first-order perturbation to19

the elastic structure. Testing on a synthetic example shows that the procedure is able to20

closely reproduce the S-wave velocity and attenuation profiles. As expected, the variations21

in P-wave velocity are not resolved, yet they do not introduce any significant bias into the22

S-wave velocity profile. The Rayleigh wave phase velocity and attenuation, measured by23

laser ultrasonic experiments, are used to infer the depth-dependence of S-wave velocity and24

of attenuation on mortar samples. This depth-dependence compares well with the depth-25

dependence derived from the sample density inferred from gamma-densitometry.26
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1. INTRODUCTION29

The interest in non-homogeneous material systems with gradually varying properties, of-30

ten referred to as Functionally Graded Materials (FGMs), has recently received considerable31

attention in several fields of research[1–4]. As opposed to the abrupt changes encountered in32

media with piecewise homogeneous layers, the gradual variation in FGM material properties33

is known to improve failure performance while preserving the intended thermal, tribological34

and/or structural benefits from combining dissimilar materials[3]. Since certain performance35

requirements cannot be practically met with spatially uniform or multi-layered material com-36

positions, FGMs have been enjoying widespread use in the fields of aeronautics, astronautics,37

etc[3, 4].38

Another material that can be considered as an FGM is concrete. Concrete is character-39

ized by its extremely heterogeneous nature since, as a common construction material, its40

composition includes cement or asphalt along with other materials, such as aggregates and41

water. The potential for a non-destructive evaluation of concrete is of major importance in42

monitoring the durability of civil engineering structures, especially as regards cover concrete,43

which is directly exposed to aggressive attack from external sources. Ultrasonic waves are44

often introduced to characterize such material properties; experiments have shown that wave45

dispersion and damping are influenced by both grain size variation and the water-to-cement46

ratio[5–7]. It is difficult however to generate a quantitative estimation for these properties47

based on measured ultrasonic signals, especially for attenuation. The main reason behind48

this constraint is the multiple-scattering of waves within such a heterogeneous medium, as49

a result of the random distribution of pores, air bubbles and aggregates when the wave-50

length has the same order of magnitude as the dimension of heterogeneities. The general51

conventional method, i.e. homogenization, has been widely employed to estimate equivalent52

or effective material properties[8]. Even though such estimations provide a reasonable over-53

all prediction of mechanical behavior, they are still insufficient to accurately predict local54

behavior, as experiments on damaged concrete have also revealed[9, 10]. The modulus of55

elasticity for pavement, composed mainly of bituminous concrete, is not constant and in56

fact varies with depth due to a number of factors including aging, moisture content and57
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temperature[10, 11].58

Given the growing interest in FGMs, the need for non-destructive techniques to mea-59

sure their mechanical properties has become more acute. Shear-wave (S-wave) velocity and60

attenuation are usually considered key parameters for characterizing the mechanical prop-61

erties of materials. As a non-invasive method, surface wave analysis has proven efficient in62

evaluating these parameters; it has been extensively used in many fields at various scales,63

ranging from earth imaging in geophysics[12–16] to the exploration of pavement structures64

in geotechnical engineering[17], as well as the estimation of material elastic properties in65

ultrasonic NDT (Non-Destructive Testing)[18–20]. At most scales, and particularly at the66

geotechnical scale[21, 22], an analysis of velocity or attenuation constitutes the main tool67

for extracting useful information from data. Material parameters are generally obtained by68

means of an inversion technique, which yields an optimal model minimizing the difference be-69

tween the predicted and measured dispersion (and/or attenuation) curves of surface waves.70

In the geotechnical field, this method has been successfully applied in order to infer the71

properties of homogeneous or multi-layered media[21], although applications with continu-72

ous variations over the depth are still lacking. On the other hand, the inversion of surface73

wave dispersion for a continuous profile of the Earth’s mantle parameters has been frequent74

in seismology for many years[14–16]. Due to the typically small variations of parameters in75

the mantle (i.e. just a few percent), dispersion curves are inverted using linear methods. In76

this paper, we will demonstrate that such a method may be extended to shear-wave velocity77

and attenuation inversions in FGMs featuring much greater variations and contrasts. This78

demonstration will be conducted first with a synthetic experiment, then by application to79

non-destructive concrete testing.80

2. THEORETICAL FORMULATION AND METHODOLOGY81

2.1. Forward Problem82

To calculate the predicted dispersion and attenuation for a forward model, one important83

step involves solving the eigenvalue problem of Rayleigh waves for the visco-elastic model. In84
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linear viscoelasticity, this solution can be obtained by employing the same governing equa-85

tions as those found in the corresponding elastic problem with identical boundary conditions,86

by simply replacing real variables with corresponding complex variables. In this paper, the87

dual conditions of linear viscoelasticity and weak dissipation have been assumed; under such88

an assumption, the eigenvalue for a visco-elastic model can be derived from the eigenvalue89

of the pure elastic case through perturbation theory[23]. As a consequence, the software90

developed for elastic media can easily be modified to the visco-elastic case.91

The eigenvalue problem for Rayleigh waves propagating in purely elastic, layered struc-

tures can be described by differential equations in matrix form[23], i.e.:

df(z)

dz
= Af(z) (1)

where z is the depth coordinate, and A a 4 × 4 matrix associated with the propagator

matrix, which is a function of the depth-varying compressional wave velocity Vp, shear-wave

velocity Vs and density ρ . f(z) is a column vector that comprises the displacement vector

r1, r2 and two elements r3, r4 of the stress tensor. Combined with boundary conditions, the

precondition for existence of a solution to Eq.(1) yields the eigenequation of Rayleigh waves,

which offers the following general form:

f(c0, ω; Vp, Vs, ρ) = 0 (2)

where c0 is the phase velocity of Rayleigh waves, and ω the angular frequency. The subscript92

0 in this context denotes the elastic case. Both analytical and numerical methods have93

been developed to treat seismic wave propagation in FGMs[1, 2]. A general treatment is94

based on the transfer matrix approach, according to which the medium with continuously-95

varying inhomogeneity is regarded as a stack of many thin, piecewise homogeneous layers[23].96

An explicit formulation of the transfer matrix for layered media can then be obtained.97

Another approach to calculating the transfer matrix of FGMs is based on an exact solution98

in the form of the Peano series of multiple integrals[24, 25]. In this manner, continuous99

inhomogeneity serves to replace the exponential solution to the wave equation by the Peano100

integral expression. We adopted a Runge-Kutta scheme herein to numerically integrate the101
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system of differential equations, derive the propagator matrices, and calculate dispersion and102

attenuation[23, 26].103

After solving for eigenvalues, specifically the phase velocity for each frequency, the partial

derivatives of phase velocity with respect to model parameters can then be obtained from

the eigenfunctions by employing the variational principle[23]. The derivatives with respect

to the three parameters ρ, Vp and Vs are given by the following expressions:

∂c0

∂ρ
=

1

2ρ

(
∂c0

∂Vs
Vs +

∂c0

∂Vp
Vp

)
− 1

2k2UI
ω2(r2

1 + r2
2) (3)

∂c0

∂Vp
=

ρVp

2k2UI

(
kr1 +

dr2

dz

)2

(4)

∂c0

∂Vs
=

ρVs

2k2UI

[(
kr2 − dr1

dz

)2

− 4kr1
dr2

dz

]
(5)

where U and k are the group velocity and wave number, respectively. I is the energy

integration of the Rayleigh wave and equals:

I =

∞∫
0

ρ
(
r2
1 + r2

2

)
dz (6)

In this paper, the software package developed by Saito has been used to calculate the104

Rayleigh wave eigenvalues and partial derivatives of phase velocity for the isotropic elastic105

model[27].106

For a visco-elastic material, the modulus M∗ and, by extension, both the body wave and

surface wave velocities can be represented by complex quantities:

M∗(ω) = M1(ω) + iM2(ω) (7)

The degree of dissipation is often characterized by the quality factor Q, which can be ex-

pressed as:

Q =
M1

M2
(8)

The complex modulus and velocities depend on frequency ω since the relationship be-107

tween stress and strain depends on time, as a result of visco-elasticity. In addition, the108
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real and imaginary parts of the modulus are not independent. The relationship known as109

Kramers-Kronig dispersions[28], which states that visco-elastic materials are inherently dis-110

persive, must be satisfied. In mathematical terms, this implies that M1 and M2 are Hilbert111

transform pairs, and this relationship constitutes the necessary and sufficient condition for112

M to satisfy the fundamental principle of causality[28].113

Laboratory experiments show that over a broad bandwidth(10−2 − 107Hz), Q can be

considered as independent of frequency at very low strain levels[29]. One commonly used

form of the dispersion relation that is able to satisfy the Kramers-Kronig relationship with

Q remaining nearly constant is the one developed by Liu et al.[30], which can be written as

[23, 31]:
V (ω)

V (ωref)
� 1 +

1

πQ
ln

ω

ωref
(9)

where ωref denotes a reference circular frequency and V the real part of the P-wave or S-

wave velocity. The dispersion relation is only applicable for weakly dissipative media, e.g.

Q > 10, in which the dispersion caused by intrinsic dissipation remains small. Frequency-

dependent modifications to the velocities introduced by attenuation are then mapped onto

Rayleigh wave phase velocity variations, yielding a first-order expression using the variational

principle:

c = c0 +
1

π
ln

(
ω

ωref

)∫ (
∂c0

∂Vs

VsQ
−1
s +

∂c0

∂Vp

VpQ
−1
p

)
dz (10)

where c0 is the phase velocity in the corresponding purely elastic model. It would appear

from this expression that phase velocity dependence on the quality factor of P- or S-waves

is:
∂c

∂Q−1
t

=
1

π
ln

(
ω

ωref

)
∂c0

∂Vt
Vt (11)

where the subscript t = P, S denotes the compressional or shear wave, respectively.114

The spatial damping of Rayleigh waves can be characterized by the dissipation factor

Q−1
R . For a plane Rayleigh wave propagating with an attenuation coefficient of α :

u = u0e
−αre−ikr (12)

Q−1
R is related to α by

Q−1
R =

αc

πf
(13)
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Q−1
R can be obtained by measuring and processing the Rayleigh wave amplitude at various

distances. Q−1
R depends, at the first order in attenuation, on the variations in quality factors

with respect to depth via the following relation:

Q−1
R =

1

c0

∫ (
∂c0

∂Vs

VsQ
−1
s +

∂c0

∂Vp

VpQ
−1
p

)
dz (14)

This expression yields the partial derivatives of Rayleigh wave dissipation with respect to

the quality factors:
∂Q−1

R

∂Q−1
t

=
1

c0

∂c0

∂Vt
Vt (15)

2.2. Inverse Problem115

For our problem, the relation between data and depth-dependent parameters can be

summarized as: [
Q−1

R (f), c(f)
]

= g(Vp, Vs, ρ, Q−1
s , Q−1

p ) (16)

where Q−1
R (f) and c(f) are respectively the dissipation factor and phase velocity of the116

Rayleigh wave at each frequency f . First-order variations in the data compared to variations117

in model parameters are given in Equations 3, 5, 11 and 15. The inversion step consists of118

identifying the model or class of models that predicts measured data as closely as possible.119

In this paper, the generalized nonlinear inversion technique for continuous problems, as120

developed by Tarantola and Valette [32], has been used to invert both the velocity and121

attenuation profiles. This method was designed to minimize the square of the differences122

between predicted and observed data on dispersion and/or attenuation.123

In expressing Eq. (16) in the general form:

d = g(p) (17)

where d and p are the data and parameter sets respectively, then the inverted model at

iteration k + 1 will be given according to the least square solution for discrete nonlinear

inverse problems (as proposed by Tarantola and Valette [32]) by:

pk+1 = p0 + Cp0 ·GT
k · (Cd0 + Gk · Cp0 ·GT

k )−1 · {d0 − g(pk) + Gk · (pk − p0)} (18)
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where G is the matrix of partial derivatives with respect to the model parameters, i.e.:

Giα = ∂gi/∂pα (19)

For the problem treated herein, which can be calculated from the formulation described in124

Section 2.1, GT is the transpose of matrix G, p0 the a priori model, d0 the data vector, g(pk)125

the data predicted from the model pk, Cp0 and Cd0 are the a priori covariance matrices of126

the parameter and data, respectively.127

The equivalent to Eq. (18) for problems with continuous variations in model parameters

is expressed by:

pk+1(z) = p0(z) +

∫
dzi

∑
i

∑
j

Cp0(z, z
′) ·Gi

k(z
′) · (S−1)ij

·
{

dj
0 − gj(pk) +

∫
dz′′ ·Gj

k(z
′′) · [pk(z)− p0(z)]

} (20)

where the matrix Sk is given by

Sij
k = (Cd0)

ij +

∫
dz′

∫
dz′′Gi

k(z
′) · Cp0(z, z

′) ·Gj
k(z

′′) (21)

Theoretically speaking, for a property that varies continuously with depth, we need to per-

form an inversion for the property at an ”infinite” number of depth points in the model. In

practice however, we are obviously required to sample the functions at a finite number of

depth points, yet we are also intent on maintaining inversion as independent of sampling,

which means introducing certain a priori information to constrain the inversion process. As

undertaken in Leveque et al. (1991) [14], Maupin and Cara (1992) [15] and Debayle and Sam-

bridge (2004) [33], we introduced the Gaussian-shaped function as the a priori covariance

function of the a priori model p0:

Cp0(z, z
′) = σ(z)σ(z′) exp(

−(z − z′)2

2L2
) (22)

where z and z′ are two depth points, L the correlation length and σ the variance at depth128

z. This set-up acts as a spatial filter to smooth the model, thereby imposing a correlation129

between points separated by a distance on the order of L, with σ(z) controlling the amplitude130

of allowable model perturbation at z. Since this approach insures that the inversion result131
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remains independent of discretization with depth, it is no longer necessary to sample the132

model with equal spacing, but rather the spacing should be greater than the correlation133

length.134

If more than one parameter requires inversion (e.g. in this case, the shear-wave velocity

Vs and P-wave velocity Vp), albeit with a certain relationship between the two being expected

(perhaps through an expected Poisson’s ratio), then the covariance matrix can be used to

impose a correlation between the variations of the two parameters:

Cp0[V s(z), V p(z′)] = σVs(z)σVp(z
′) exp(

−(z − z′)2

2L2
)Csp (23)

where Csp is the coupling coefficient between parameters Vs and Vp, which is capable of135

varying between 1 and -1. The respective variation for each parameter is controlled by its136

standard deviation.137

In the applications that follow, we will only invert for Vs, Q−1
s and/or Vp. Our software138

can also simultaneously invert for ρ or Q−1
p , with Vs, Vp and Q−1

s , although tradeoffs must139

be introduced whenever too many parameters are involved in the inversion process. Since140

Rayleigh waves are less sensitive to ρ and Q−1
p , their variations are assumed to be negligible141

during an inversion.142

3. SYNTHETIC EXPERIMENTS143

The synthetic model shown in Figure 1 will be discussed in this section. We will begin144

by calculating the velocity and attenuation of the Rayleigh wave propagating in this model.145

Velocity and attenuation will then be adopted as the ’measured’ data used for model prop-146

erty inversions. Since the model is known, it proves helpful to validate the algorithm and147

investigate the effects of input parameters on inversion results, such as initial model and148

correlation length. As is customary in the seismological literature , Q−1 , i.e. the inverse of149

quality factor Q, will be used to characterize the material attenuation.150

The Vs and Q−1
s profiles of this model are defined by Eq.(24) below:⎧⎪⎨

⎪⎩
φ(z) = φ(d)

{
1 +

1

2

φ(0)− φ(d)

φ(d)

[
tanh[a(1− 2z/d)]

tanh a
+ 1

]}
0 ≤ z ≤ d

φ(z) = φ(d) z > d

(24)
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Figure 1: a) velocity profiles; b) profile of the inverse of quality factor Qs; c) phase and group velocity of

the Rayleigh wave propagating in this model; and d) inverse of the Rayleigh wave Q-value

where z is the depth. The Poisson’s ratio equals 0.22 and Vp is obtained by:

Vp =

√
2(1− σ)

1− 2σ
Vs (25)

Next, let a = 2, d = 5 in Eq.(24), with the model being assumed homogeneous below

5cm. Baron et al. (2007)[24] adopted the function in Eq.(24) in order to model a transition

layer, in which material properties vary continuously without any abrupt change at the edge

points. These authors also discussed the forward problem for the elastic case by introducing

the Peano series and went on to offer an analytical expression of the dispersion relation. This

model has been extended here to the visco-elastic case in order to investigate the inverse

problem. We set Vs(0) = 1.8km/s, Vs(d) = 2.3km/s. It is assumed that Q−1
s exhibits the

same variation as Vs and that Q−1
s (0) = 0.02, Q−1

s (d) = 0.06. Q−1
p is also assumed to satisfy

the equation in[34], i.e.:

Q−1
p (z) =

4

3

V 2
s (z)

V 2
P (z)

Q−1
s (z) (26)

Figures 1a and b show the velocity and Q−1
s profiles of this model, while Figures 1c and d151

indicate the velocity and Q−1 of the Rayleigh wave. The velocity for the pure elastic case is152
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also given in Figure 1c.153

In civil engineering, the Poisson’s ratio, instead of the Vp profile, of materials can some-154

times be approximately estimated as a priori information. Figure 2 displays the inversion155

results with a known Poisson’s ratio (0.22) as the a priori information. The initial model,156

inverted profiles and true model are all presented in this figure. The initial value of Vs con-157

sists of the profile 1.1c − 0.5λ . In early geotechnical engineering practice, this profile was158

often used to approximate the Vs profile. The two coefficients (1.1 and 0.5) may at times be159

modified depending on the expected Poisson’s ratio of the medium. We performed a large160

number of calculations for various initial models, and this profile proves to be a better initial161

model than a constant profile. The initial values of Q−1
s can be chosen depending on the162

Q−1 of Rayleigh waves. A morderate value for Rayleigh wave Q−1 turns out to be a good163

initial model for Q−1
s . The initial Vp is generated from Vs by means of a known Poisson’s164

ratio. Figure 2 reveals a set of good inversion results obtained for Q−1
s , Vs and hence Vp.165
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Figure 2: Inversion results with a known Poisson’s ratio. (a),(b),(c) and (d) are the profiles of Poisson’s

ratio, S-wave velocity, P-wave velocity and Q−1, respectively.

In contrast, without any a priori information on the Poisson’s ratio and Vp, inverting for166

Vs and Vp as the independent parameters may be preferred. Figure 3 presents the inversion167

results for this particular case. Compared to Figure 2, Figure 3 shows that larger differences168

between the true and inverted velocity profiles are observed within the 4cm− 5cm range for169
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Vs and Q−1
s . This case features less a priori information and a higher number of inverted170

parameters, which in turn increases the level of inversion uncertainty. For P-wave velocity171

Vp, the difference between the inverted and true models is considerable. As a consequence172

of the low sensitivity of Rayleigh waves to Vp, the inverted Vp profile has in fact changed173

very little compared to the initial model. Even though the inverted Vp is far from the true174

model, the inverted phase velocity and Q−1 of the Rayleigh wave display good agreement175

with the data, which implies that the inverted Vp is not reliable and moreover that the same176

dispersion curves and Q−1 can allow for multiple solutions of Vp. Numerical results for the177

other synthetic test also support this finding. In a practical application therefore, we should178

seek a priori information on the Poisson’s ratio or P-wave velocity of the materials using the179

other method, such as reflection and refraction method. It should be pointed out however180

that the incorrect Vp profile does not significantly bias the inverted Vs and Q−1
s profiles and181

that these profiles can be properly recovered even in the absence of accurate knowledge on182

Vp or Poisson’s ratio.183
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Figure 3: Identical to Fig.2, yet without knowing the value of Poisson’s ratio.
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4. APPLICATION: DETERMINATION OF MORTAR PROPERTIES FROM184

LASER MEASUREMENTS185

In this section, the method described above will be applied to perform an inversion for186

the shear-wave velocity (correspondingly the Poisson’s ratio) and for the attenuation of a187

mortar sample, based on surface wave data collected using a laser interferometer.188

4.1. Experimental set-up and measurements189

Experimental measurements have been carried out on mortar samples with a maximum190

grain size of Dmax. = 4 mm. Two series of mortar slabs M1 and M2, differing in just191

their water/cement ratio, were considered: the M1 series has a low water/cement ratio192

(w/c = 0.35), while the M2 ratio is higher (w/c = 0.65), thus inducing higher porosity. CEM193

1 52.5N CE CP2 NF cement has been used and the granulate are silico calcareous. The slabs194

were held underwater in between experiments to ensure remaining fully saturated at all times.195

Each series was composed of 5 identical slabs with dimensions 600mm×600 mm×120 mm.196

The 120 mm specimen thickness was considered sufficient to ensure that signals received197

at the surface corresponded to Rayleigh waves, thus avoiding the generation of Lamb wave198

modes.199

A piezoelectric transducer equipped with a wedge was used as a source to generate200

Rayleigh waves in the mortar slabs. The source function was a Ricker wavelet with a central201

frequency equal to 120 kHz. Reception was performed with a laser interferometer (Tempo202

from Bossa Nova Tech), which acquires the normal displacement at the slab surface according203

to a non-contact protocol. The laser beam position was controlled by a robot to allow for an204

acquisition every 1 cm at a distance from the source ranging from 10 cm to 45 cm, to yield205

the equivalent of a common-shot gathers in seismology. The precision of the laser beam206

position is better than 0.01mm and the data acquisition card has a sampling rate equal to207

10MHz and a 16 bits resolution[35].208

To take into account the heterogeneous nature of the mortar (i.e. size and position209

of sand, presence of bubbles and other surface inhomogeneities[36]), a total of 36 similar210

common-shot gathers were collected at different positions on the 5 slabs for each series; a211
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Figure 4: Rayleigh wave phase velocity (a) and Q−1 (b) of both the experimental and inverted models for

mortar M1

spatial average could then be established to obtain the coherent field.212

Geometrical spreading was corrected from the measurements by multiplying all signals by213
√

r, where r is the distance from the source. We used a p−ω transform to extract the phase214

velocity dispersion curves[37], where p represents the slowness of the waves (p = 1/c) and215

ω the angular frequency. This method transform the multi-channel data wave field into the216

slowness-frequency domain. In p−ω domain, the maximum will be reached at the eigenvalues217

of the Rayleigh wave. The algorithm proposed by Herrmann is used to extract the velocities218

for each frequency and also provides error bars[38]. The attenuation factor is estimated from219

the decrease of the amplitude spectrum of the coherent field during propagation. Damping220

factor vs. frequency was evaluated by performing a linear fit of the natural logarithm of the221

spectral amplitude[39].222

Figure 4 provides the experimental phase velocity and error bars. Due to limitation223

in the transducer frequency band as well as the signal-to-noise ratio, only data in the 60-224

180 kHz bandwidth could be introduced. This frequency range corresponds to wavelengths225

ranging from approximately 10mm to 40mm[36]. The spectrum modulus of the Rayleigh226

waves at this bandwidth is larger than -20dB. The interval between two adjacent frequencies227

is 2440Hz. Details about the experiment and extraction of the dispersion curves can be228

found in reference[39].229
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Dispersion of Rayleigh waves may arise from two phenomena: the variation with depth of230

the properties of the media and the dispersion of P and S waves related to multiple scatter-231

ing in heterogeneous media. The scattering produces in addition attenuation. It is therefore232

in theory possible to distinguish between the two effects by a combined analysis of disper-233

sion and attenuation. However, the frequency range used here corresponds to wavelength234

varying from 10 to 40 mm, while in the mortar series M1 and M2 the maximum grain size235

is Dmax = 4 mm. Then the wavelength is much bigger than the heterogeneities of mortar,236

inducing negligible scattering effects. The scattering-related dispersion of P and S waves in237

the mortars used here and in associated concrete samples has been studied in reference[36].238

They find that for the concrete samples, which in essence contain bigger heterogeneities239

(coarse aggregates of Dmax = 20 mm) than the mortar samples, scattering related to hetero-240

geneities generates a noticeable additional dispersion compared to the mortars, in the actual241

frequency range. In addition, the scattering by aggregates produces an attenuation about242

three times the one observed for mortars. We conclude that for the mortar used here, the243

major part of the dispersion is likely to originate from depth-dependence of the structure.244

4.2. Inversion results245
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Figure 5: Inversion results for mortar M1 - two results are shown, one with an unknown Poisson’s ratio and

the other with a known estimated Poisson’s ratio equal to 0.2

Figure 5 shows the inversion results for the M1 series. The correlation length has been246
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set at 0.5cm, and the a priori variance is 0.002km/s for Vs and Vp and 2× 10−4 for Q−1. In247

comparison with synthetic models, a greater number of iterations was required here before248

obtaining convergence. We conducted a total of 100 iterations and typically reached conver-249

gence after between the 50th and 60th iteration. In order to compare results for differenta250

priori information, the inversion procedure was carried out in two ways: first with an un-251

known Poisson’s ratio ν, where Vs, Vp and Qs were inverted simultaneously; and second with252

a known Poisson’s ratio given as a priori information, where only Vs and Qs were inverted.253

No real significant differences are observed in Figure 5, except for the larger a posteriori254

error obtained on the inversion with an unknown Poisson’s ratio. This finding is not diffi-255

cult to explain since the constraint imposed on the inversion procedure without an a priori256

Poisson’s ratio was less stringent. Similar trends and orders of magnitude were observed for257

these series of results. Figure 4 indicates that these two inverted dispersion and Q−1 curves258

fit the experimental data quite well. Based on this example and in recalling the discussion on259

numerical models in the previous section, it is considered an appropriate choice to perform260

the inversion with an a priori Poisson’s ratio estimated from experience.261
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Figure 6: Inversion results for mortars M1 and M2.

Figure 6 presents the inversion results for M2 and M1, with a known and constant262

Poisson’s ratio set equal to 0.2. As expected, it was observed that the shear-wave velocity263

of mortar M1 exceeded that of mortar M2, since M2 is more porous. Similarly, the quality264
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factor Qs of M1 was greater than that of M2 at all depths. For both mortars, a slight265

dispersion in the phase velocity dispersion curve is visible, hence indicating that material266

properties vary with depth. At low frequencies, phase velocity increases such that a higher267

body-wave shear velocity with depth can be expected. This observation is in accordance268

with common knowledge held on concrete properties. The first few millimeters contain269

fewer aggregates than lower depths due to a wall effect: the proportion of large aggregates270

becomes constant after a depth equal to the radius of the largest aggregate[40]. To be271

able to explain this increase of wave velocity, we performed density profile measurements by272

gammadensitometry[41]. In the slabs the density is increasing towards the surface(See Figure273

8 for the density variation). We suppose that this phenomenon is due to the use of a wood274

form that is coated with bakelite so that bleeding water is not absorbed by this formwork on275

the contrary to wooden formwork classically used for concrete structures. As a consequence,276

this higher quantity of water available near the surface, during setting, is increasing density277

by chemical reaction in this area compared to the depth. Furthermore, the grain size is278

surely modifying the density near the surface, and this phenomenon is competing with pore279

size and pore distribution near the surface together with water gradient that can extend to280

different depth[41].281
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Figure 7: Rayleigh wave phase velocity (a) and Q−1 (b) of both the experimental and inverted models for

mortar M2

For the inversion step, a constant Poisson’s ratio of 0.2, i.e. a classical value for mortar,282
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was chosen. It is apparent on the shear-wave velocity profiles that below 1.5 cm, the mortar283

can be considered homogeneous with a shear-wave velocity equal to 2,660 m.s−1 for M1 and284

2,330 m.s−1 for M2. Figure 7 shows the experimental phase velocity and attenuation with285

error bars, together with the corresponding inverted one.286

The depth limits for the two inverted profiles are slightly different because the higher287

phase velocity in M1 yields slightly larger wavelengths, and therefore larger penetration288

depths, than in M2, for the same frequency range. The inverted Vs profiles for M1 and289

M2 tend to display a typical characteristic, namely increasing smoothly with depth over the290

first few millimeters near the surface, with an inflection point observed at 1.4− 1.6cm, then291

tending to a constant value at greater depths. This finding is a result of aggregate size,292

the presence of air bubbles and a saturation rate capable of differing nearer the surface and293

deeper due to the wall effect and exposure to air. Consequently, the density may feature294

similar characteristics. To verify these inverted profiles, we measured the mortar sample295

density at various depths using gamma-densitometry. It should be pointed out this does296

not mean we attribute the velocity variation only to the density variation. The shear wave297

velocity variation is related to several parameters such as density, Young’s modulus and298

water content, often in competition.299

Figure 8 shows the density profiles with errors measured by means of gamma-densitometry

for mortars M1 and M2; average density equals 2,256±5 kg/m3 for M1 and 2,151±17kg/m3

for M2. A difference in density is noticed near the edges, as a result of the skin effect. For the

sake of comparison, we used the function with exponential attenuation to fit measurements

(counting from the surface):

f = f0 + Ce−x/a (27)

where f and x denote density and depth, respectively. C and a are the constants to300

be determined. The function and its graph are shown in Figure 8. For M1, the profile is301

nearly symmetrical on both sides. At a depth of 1.5-2.0cm from the surface (as denoted by302

two circles drawn in a dashed line), a similar inflection point can be observed. The density303

tends to a constant between the two inflection points. The profile shape and inflection point304

location closely match the Vs profile. For M2, the density profile is not symmetrical from305
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Figure 8: The density profiles for M1 and M2 measured by gamma-densitometry.

both sides of the surface. This outcome is likely due to the presence of air bubbles near one306

side (where depth equals 120mm on Fig.8). Air bubbles are usually removed by hammer307

blows for different samples on both sides of all slabs. For mortar M2 however, the protocol308

perhaps differed on the side of the slab used for gamma-densitometry coring samples, which309

could explain the difference in density near the 120mm deep side. For mortar M2 near the310

other side (i.e. 0mm depth), the same density variations as for mortar M1 can be observed,311

which is why density measurements have, to some extent, confirmed our inverted Vs profile312

and thereby offer a reliable verification for our method.313

5. DISCUSSION AND CONCLUSION314

We have presented herein a method for inverting surface wave dispersion and attenuation315

in terms of the depth-dependent visco-elastic parameters of Functionally Graded Materials316

(FGMs). The particularity of this method lies in the fact that the visco-elastic parameters317

are allowed to vary continuously with depth and that both the forward problem (involving318
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calculation of dispersion and attenuation) and the inverse problem (evaluation of visco-319

elastic parameters) effectively take into account the continuous nature of these variations.320

The forward problem solves the equation of elastic motion using a Runge-Kutta integration321

scheme. The viscous part is treated as a first-order perturbation to the elastic structure,322

which limits method applicability to materials with weak attenuation.323

The inverse problem is treated using the nonlinear solution to continuous inverse problems324

developed by Tarantola and Valette (1982)[32]. This set-up allows for continuous variations,325

without having to define a set of functions over which the profile is to be decomposed. The326

inversion step is dependent on a prescribed correlation length for the particular profile and327

not on its sampling with depth. This protocol is very flexible and enables representing a328

large set of models very easily. Our software introduces interfaces at prescribed depths, yet329

this option has not been adopted in the present application. The starting model is defined330

by a simple formula directly related to the dispersion curve. Problem non-linearity is taken331

into consideration by iterating linear inversions; we have shown that convergence towards332

the correct profile is obtained after just a few iterations in the purely elastic case, but a333

larger number of iterations is required in the case of attenuation.334

Dispersion and attenuation have been inverted simultaneously for the S-wave velocity,335

attenuation and, in some cases, for P-wave velocity. The dispersion due to attenuation has336

also been incorporated, thus avoiding erroneous mapping as a result of depth-dependent,337

S-wave velocities. P-wave velocity variations can also be accounted for either by including338

them as a parameter to be inverted or by coupling their variations to those of the S-wave339

velocity through a fixed Poisson’s ratio value. Partial coupling via a correlation coefficient340

between 0 and 1 is also possible.341

The Rayleigh wave phase velocity and attenuation measured by means of laser ultrasonic342

experiments are used to infer the depth-dependence of S-wave velocity and attenuation on343

mortar samples. It has been found that mortar inhomogeneity is confined to the first 1.5cm344

of depth. This depth-dependence compares well with that of the sample density inferred345

from gamma-densitometry.346

The procedure implemented has been designed to analyze the variations in elastic param-347
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eters with depth; moreover, we assumed herein that the material is homogeneous in the two348

horizontal directions. This method however may still be combined with other techniques in349

order to recover the depth-dependence and lateral variations of the elastic parameters. In350

the case of randomly distributed lateral heterogeneities, such as those in the mortar samples,351

stacking several recordings has yielded information on the average structure. In the case of352

lateral variations that are consistent with respect to the length of analyzed surface waves,353

it can be shown that the dispersion measured between two points depends on the average354

structure between points[42]. Average structures along many paths can then be interpreted355

within a 3-D structure using various tomographic techniques[12–16, 33, 43]. As an alter-356

native, local measurements of dispersion and their inversion with depth can serve to map357

lateral variations more directly[44].358

Finally the possibility of using surface wave to investigate variation of properties of the359

first centimeter of concrete (cover concrete) are underway. A major step will consist in360

dealing with the strong scattering on our measurements as the wavelength will be of the361

same order of grandeur as the aggregates (few centimeters).362
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