L. L. Thompson, A review of finite-element methods for time-harmonic acoustics, Journal of the Acoustical Society of America, vol.119, issue.3, 2006.

R. Astley, Numerical methods for noise propagation in moving flows, with application to turbofan engines, Acoustical Science and Technology, vol.30, issue.4, pp.227-239, 2009.

A. Prinn, Efficient finite element methods for aircraft engine noise prediction, 2014.

S. Petersen, D. Dreyer, and O. Estorff, Assessment of finite and spectral element shape functions for efficient iterative simulations of interior acoustics, Computer Methods in Applied Mechanics and Engineering, vol.195, pp.6463-6478, 2006.

J. Boyd, Chebyshev and Fourier Spectral Methods, 2000.

P. Solín, K. Segeth, and I. Dole?el, Higher-Order Finite Element Methods, 2004.

G. Karniadakis and S. Sherwin, Spectral/hp element methods for computational fluid dynamics, 2013.
DOI : 10.1093/acprof:oso/9780198528692.001.0001

M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM Journal on Numerical Analysis, vol.42, issue.2, pp.553-575, 2004.
DOI : 10.1137/s0036142903423460

P. Vos, S. Sherwin, and R. Kirby, From h to p efficiently: Implementing finite and spectral/h-p element methods to achieve optimal performance for low-and high-order discretisations, Journal of Computational Physics, vol.229, issue.13, pp.5161-5181, 2010.
DOI : 10.1016/j.jcp.2010.03.031

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/14735/2/Journal%20of%20Computational%20Physics_229_13_2010.pdf

H. Bériot, A. Prinn, and G. Gabard, Efficient implementation of high-order finite elements for Helmholtz problems, International Journal for Numerical Methods in EngineeringIn

I. Babu?ka and B. Guo, The h, p and h-p version of the finite element method-Basis theory and applications, Advances in Engineering Software, vol.15, issue.3-4, pp.159-174, 1992.

R. Hiptmair, A. Moiola, and I. Perugia, A survey of Trefftz methods for the Helmholtz equation

T. Luostari, T. Huttunen, and P. Monk, The ultra weak variational formulation using Bessel basis functions, Communications in Computational Physics, vol.11, issue.2, pp.400-414, 2012.
DOI : 10.4208/cicp.121209.040111s

O. Cessenat and B. Desprès, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM Journal on Numerical Analysis, vol.35, issue.1, pp.255-299, 1998.

T. Huttunen, P. Monk, and J. Kaipio, Computational aspects of the ultra-weak variational formulation, Journal of Computational Physics, vol.182, issue.1, pp.27-46, 2002.
DOI : 10.1006/jcph.2002.7148

O. Cessenat and B. Desprès, Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation, Journal of Computational Acoustics, vol.11, issue.2, pp.227-238, 2003.
DOI : 10.1142/s0218396x03001912

P. Monk and D. Wang, A least-squares method for the Helmholtz equation, Computer Methods in Applied Mechanics and Engineering, vol.175, issue.1-2, pp.121-136, 1999.

G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems, Journal of Computational Physics, vol.225, issue.2, pp.1961-1984, 2007.
DOI : 10.1016/j.jcp.2007.02.030

G. Gabard, P. Gamallo, and T. Huttunen, A comparison of wave-based discontinuous Galerkin, ultra-weak and least-square methods for wave problems, International Journal for Numerical Methods in Engineering, vol.85, issue.3, pp.380-402, 2011.

R. Hiptmair, A. Moiola, and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM Journal on Numerical Analysis, vol.49, issue.1, pp.264-284, 2011.

C. J. Gittelson and R. Hiptmair, Dispersion analysis of plane wave discontinuous Galerkin methods, International Journal for Numerical Methods in Engineering, vol.98, issue.5, pp.313-323, 2014.
DOI : 10.1002/nme.4626

R. Hiptmair, A. Moiola, and I. Perugia, Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes, Applied Numerical Mathematics, vol.79, pp.79-91, 2014.

R. Hiptmair, A. Moiola, I. Perugia, and C. Schwab, Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-dGFEM, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.03, 2014.

R. Hiptmair, A. Moiola, and I. Perugia, Plane wave discontinuous Galerkin methods: exponential convergence of the hp-version, p.1, 2015.

S. Kapita, P. Monk, and T. Warburton, Residual-based adaptivity and pwdg methods for the helmholtz equation, SIAM Journal on Scientific Computing, vol.37, issue.3, 2015.

P. Gamallo and R. Astley, A comparison of two Trefftz-type methods: the ultraweak variational formulation and the least-squares method, for solving shortwave 2-D Helmholtz problems, International journal for numerical methods in engineering, vol.71, issue.4, pp.406-432, 2007.

C. Farhat, I. Harari, and L. Franca, The discontinuous enrichment method, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.48, pp.6455-6479, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02012889

C. Farhat, I. Harari, and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Computer Methods in Applied Mechanics and Engineering, vol.192, pp.646-647, 2003.

P. Massimi, R. Tezaur, and C. Farhat, A discontinuous enrichment method for three-dimensional multiscale harmonic wave propagation problems in multi-fluid and fluid-solid media, International Journal for Numerical Methods in Engineering, vol.76, issue.3, pp.400-425, 2008.

C. Farhat, R. Tezaur, and P. Weidemann-goiran, Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems, International Journal for Numerical Method in Engineering, vol.61, issue.11, pp.1938-1956, 2004.

R. Tezaur and C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and lagrange multipliers for the solution of midfrequency helmholtz problems, International Journal for Numerical Methods in Engineering, vol.66, issue.5, pp.796-815, 2006.

W. Desmet, A wave based prediction technique for coupled vibro-acoustic analysis, 1998.

P. Ladevze, L. Arnaud, P. Rouch, and C. Blanz, The variational theory of complex rays for the calculation of medium-frequency vibrations, Engineering Computations, vol.18, issue.1, pp.193-214, 2001.

Q. Hu and L. Yuan, A weighted variational formulation based on plane wave basis for discretization of Helmholtz equations, International Journal of Numerical Analysis and Modeling, vol.11, issue.3, pp.587-607, 2014.

J. Melenk and I. Babu?ka, The partition of unity finite element method: basic theory and applications, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.289-314, 1996.

T. Huttunen, P. Gamallo, and R. Astley, Comparison of two wave element methods for the Helmholtz problem, Communications in Numerical Methods in Engineering, vol.25, issue.1, pp.35-52, 2009.

D. Wang, R. Tezaur, J. Toivanen, and C. Farhat, Overview of the discontinuous enrichment method, the ultra-weak variational formulation, and the partition of unity method for acoustic scattering in the medium frequency regime and performance comparisons, International Journal for Numerical Methods in Engineering, vol.89, pp.403-420, 2012.

G. W. Zumbusch, Symmetric hierarchical polynomials for the h-p-version of finite elements

F. Ihlenburg and I. Babuska, Finite element solution of the Helmholtz equation with high wave number part ii: the h-p version of the fem, SIAM Journal on Numerical Analysis, vol.34, issue.1, pp.315-358, 1997.

I. Babu?ka and M. Suri, The p and hp versions of the finite element method, basic principles and properties, SIAM review, vol.36, issue.4, pp.578-632, 1994.

H. Bériot, G. Gabard, and E. Perrey-debain, Analysis of high-order finite elements for convected wave propagation, International Journal for Numerical Methods in Engineering, vol.96, issue.11, pp.665-688, 2013.

R. Leveque, Finite volume methods for hyperbolic problems, 2002.

G. Whitham, Linear and nonlinear waves, 1999.

G. Gabard and O. Dazel, A discontinuous Galerkin method with plane waves for sound absorbing materials, International Journal for Numerical Methods in Engineeringdoi

R. Tezaur, L. Zhang, and C. Farhat, A discontinuous enrichment method for capturing evanescent waves in multiscale fluid and fluid/solid problems, Computer Methods in Applied Mechanics and Engineering, vol.197, pp.1680-1698, 2008.

T. Luostari, T. Huttunen, and P. Monk, Improvements for the ultra weak variational formulation, International Journal for Numerical Methods in Engineering, vol.94, issue.6, pp.598-624, 2013.

J. Caruthers, J. French, and G. Raviprakash, Green function discretization for numerical solution of the Helmholtz equation, Journal of Sound And Vibration, vol.187, issue.4, pp.553-568, 1995.

P. Gamallo and R. Astley, A comparison of two Trefftz-type methods: the ultraweak variational formulation and the least-squares method, for solving shortwave 2-D Helmholtz problems, International Journal for Numerical Methods in Engineering, vol.71, issue.4, pp.406-432, 2007.

G. Gabard, R. Astley, P. Gamallo, and G. Kennedy, Physics-based computational methods for aero-acoustics, IUTAM Symposium on computational aero-acoustics for aircraft noise prediction, vol.6, pp.183-192, 2010.

C. J. Gittelson, R. Hiptmair, and I. Perugia, Plane wave discontinuous Galerkin methods: analysis of the h-version, vol.43, pp.297-331, 2009.

A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the helmholtz equation, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, vol.42, issue.6, pp.925-940, 2008.

A. Pierce, Acoustics: An introduction to its physical principles and applications, 1989.

I. Babu?ka, B. Andersson, B. Guo, J. Melenk, and H. Oh, Finite element method for solving problems with singular solutions, Journal of Computational and Applied Mathematics, vol.74, issue.1-2, pp.51-70, 1996.

D. Osei-kuffuor and Y. Saad, Preconditioning Helmholtz linear systems, Applied Numerical Mathematics, vol.60, issue.4, pp.420-431, 2010.

X. Zheng and S. Dong, An eigen-based high-order expansion basis for structured spectral elements, Journal of Computational Physics, vol.230, issue.23, pp.8573-8602, 2011.

C. Rodrigues, J. Suzuki, and M. Bittencourt, Construction of minimum energy high-order Helmholtz bases for structured elements, Journal of Computational Physics, vol.306, pp.269-290, 2016.

O. Laghrouche, P. Bettess, and R. Astley, Modelling of short wave diffraction problems using approximating systems of plane waves, International Journal for Numerical Methods in Engineering, vol.54, issue.10, pp.1501-1533, 2002.

P. Bientinesi, V. Eijkhout, K. Kim, J. Kurtz, and R. Van-de-geijn, Sparse direct factorizations through unassembled hyper-matrices, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.912, pp.430-438, 2010.

D. Pardo, J. Lvarez-aramberri, M. Paszynski, L. Dalcin, and V. Calo, Impact of element-level static condensation on iterative solver performance, Computers & Mathematics with Applications, vol.70, issue.10, pp.2331-2341, 2015.

L. Imbert-gérard and B. Després, A generalized plane-wave numerical method for smooth nonconstant coefficients, IMA Journal of Numerical Analysis, vol.34, issue.3, pp.1072-1103, 2014.

L. Imbert-gérard and P. Monk, Numerical simulation of wave propagation in inhomogeneous media using Generalized Plane Waves

C. Alves and C. Chen, A new method of fundamental solutions applied to nonhomogeneous elliptic problems, Advances in Computational Mathematics, vol.23, issue.1-2, pp.125-142, 2005.