P. J. Withers, Residual stress and its role in failure, Rep. Prog. Phys, vol.70, p.2211, 2007.

J. J. Kruzic, Predicting fatigue failures, Science, vol.325, p.156, 2009.

P. Li, S. X. Li, Z. G. Wang, and Z. F. Zhang, Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals, Prog. Mater. Sci, vol.56, p.328, 2011.

A. Pineau, D. L. Mcdowell, E. P. Busso, and S. D. Antolovich, Failure of metals II: Fatigue, Acta Mater, vol.107, p.484, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308269

M. Kamal and M. M. Rahman, Advances in fatigue life modeling: A review, Renew. Sustain. Energ. Rev, vol.82, p.940, 2018.

P. B. Nagy, Fatigue damage assessment by nonlinear ultrasonic materials characterization, Ultrasonics, vol.36, p.375, 1998.

C. Bermes, J. Kim, J. Qu, and L. J. Jacobs, Experimental characterization of material nonlinearity using Lamb waves, Appl. Phys. Lett, vol.90, p.21901, 2007.

J. H. Cantrell and W. T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures, Int. J. Fatigue, vol.23, p.487, 2001.

M. Deng and J. Pei, Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach, Appl. Phys. Lett, vol.90, p.121902, 2007.

V. V. Rao, E. Kannan, R. V. Prakash, and K. Balasubramaniam, Fatigue damage characterization using surface acoustic wave nonlinearity in aluminum alloy AA7175-T7351, J. Appl. Phys, vol.104, p.123508, 2008.

C. Pruell, J. Kim, J. Qu, and L. J. Jacobs, Evaluation of plasticity driven material damage using Lamb waves, Appl. Phys. Lett, vol.91, p.231911, 2007.

L. J. Pyrak-nolte, J. Xu, and G. M. Haley, Elastic Interface Waves Propagating in a Fracture, Phys. Rev. Lett, vol.68, p.3650, 1992.

C. B. Scruby and L. E. Drain, Laser Ultrasonics Techniques and Applications, 1990.

D. Royer and E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications, Advanced Texts in Physics, vol.II, 2000.

P. Hess, Surface acoustic waves in materials science, Phys. Today, vol.55, issue.3, p.42, 2002.

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, Laser ultrasonic detection of surface breaking discontinuities: Scanning laser source technique, Mater. Eval, vol.58, 2000.

S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks, Nondestr. Test. Eval, vol.23, p.25, 2008.

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc et al., Coherent Phonon Generation and Detection by Picosecond Light Pulses, Phys. Rev. Lett, vol.53, p.989, 1984.

A. A. Kolomenskii, A. M. Lomonosov, R. Kuschnereit, P. Hess, and V. E. Gusev, Laser Generation and Detection of Strongly Nonlinear Elastic Surface Pulses, Phys. Rev. Lett, vol.79, p.1325, 1997.

S. Mezil, N. Chigarev, V. Tournat, and V. Gusev, All-optical probing of the nonlinear acoustics of a crack, Opt. Lett, vol.36, p.3449, 2011.

C. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. Shen et al., Probing of laser-induced crack closure by pulsed laser-generated acoustic waves, J. Appl. Phys, vol.113, p.14906, 2013.
DOI : 10.1063/1.4772644

C. Prada, O. Balogun, and T. W. Murray, Laser-based ultrasonic generation and detection of zero-group velocity Lamb waves in thin plates, Appl. Phys. Lett, vol.87, p.194109, 2005.

D. Clorennec, C. Prada, D. Royer, and T. W. Murray, Laser impulse generation and interferometer detection of zero group velocity Lamb mode resonance, Appl. Phys. Lett, vol.89, p.24101, 2006.
DOI : 10.1063/1.2220010

D. Clorennec, C. Prada, and D. Royer, Local and noncontact measurements of bulk acoustic wave velocities in thin isotropic plates and shells using zero group velocity Lamb modes, J. Appl. Phys, vol.101, p.34908, 2007.
DOI : 10.1063/1.2434824

S. Mezil, F. Bruno, S. Raetz, J. Laurent, D. Royer et al., Investigation of interfacial stiffnesses of a tri-layer using zero-group velocity Lamb modes, J. Acoust. Soc. Am, vol.138, p.3202, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01889422

C. Prada, D. Clorennec, and D. Royer, Local vibration of an elastic plate and zero-group velocity Lamb modes, J. Acoust. Soc. Am, vol.124, p.203, 2008.
DOI : 10.1121/1.2918543

C. Prada, D. Clorennec, T. W. Murray, and D. Royer, Influence of the anisotropy on zero-group velocity Lamb modes, J. Acoust. Soc. Am, vol.126, p.620, 2009.
DOI : 10.1121/1.3167277

S. Raetz, J. Laurent, T. Dehoux, D. Royer, B. Audoin et al., Effect of refracted light distribution on the photoelastic generation of zero-group velocity lamb modes in optically low-absorbing plates, J. Acoust. Soc. Am, vol.138, p.3522, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01889421

F. Faëse, S. Raetz, N. Chigarev, C. Mechri, J. Blondeau et al., Beam shaping to enhance zero group velocity Lamb mode generation in a composite plate and nondestructive testing application, NDT&E Int, vol.85, p.13, 2017.

A. Plumtree and B. P. O'connor, Damage accumulation and fatigue crack propagation in a squeeze-formed aluminium alloy, Int. J. Fatigue, vol.11, p.249, 1989.

A. Fatemi and L. Yang, Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials, Int. J. Fatigue, vol.20, p.9, 1998.

B. Sun, L. Yang, and Y. Guo, A high-cycle fatigue accumulation model based on electrical resistance for structural steels, Fatigue Fract. Eng. Mater. Struct, vol.30, p.1052, 2007.

X. J. Sun, C. C. Wang, J. Zhang, G. Liu, G. J. Zhang et al., Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates, J. Phys. D, vol.41, p.195404, 2008.
DOI : 10.1088/0022-3727/41/19/195404

J. H. Cantrell, Ultrasonic harmonic generation from fatigueinduced dislocation substructures in planar slip metals and assessment of remaining fatigue life, J. Appl. Phys, vol.106, p.93516, 2009.

M. Amura, M. Meo, and F. Amerini, Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter, J. Acoust. Soc. Am, vol.130, p.1829, 2011.
DOI : 10.1121/1.3621714

URL : http://opus.bath.ac.uk/27119/1/Meo_JASA_2011_130_4_1829.pdf

A. Aid, A. Amrouche, B. Bachir, M. Bouiadjra, G. Benguediab et al., Fatigue life prediction under variable loading based on a new damage model, Mater. Des, vol.32, p.183, 2011.
DOI : 10.1016/j.matdes.2010.06.010

URL : https://hal.archives-ouvertes.fr/hal-00515479

S. J. Li, L. E. Murr, X. Y. Cheng, Z. B. Zhang, Y. L. Hao et al., Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting, Acta Mater, vol.60, p.793, 2012.
DOI : 10.1016/j.actamat.2011.10.051

J. D. Achenbach, Wave Propagation in Elastic Solids, 1973.

B. A. Auld, Acoustic Fields and Waves in Solids (R. E, vol.2, 1990.

D. Royer and E. Dieulesaint, Elastic Waves in Solids, vol.1, 1999.

D. Clorennec, C. Prada, and D. Royer, Laser ultrasonic inspection of plates using zero-group velocity Lamb modes, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.57, p.1125, 2010.
DOI : 10.1109/tuffc.2010.1523

M. C`-es, D. Clorennec, D. Royer, and C. Prada, Thin layer thickness measurements by zero group velocity Lamb mode resonances, Rev. Sci. Instrum, vol.82, p.114902, 2011.

M. C`-es, D. Royer, and C. Prada, Characterization of mechanical properties of a hollow cylinder with zero group velocity Lamb modes, J. Acoust. Soc. Am, vol.132, p.180, 2012.

J. W. Hutchinson, Stresses and Failure Modes in Thin Films and Multilayers, 1996.

H. Chai and C. D. Babcock, Two-dimensional modelling of compressive failure in delaminated laminates, J. Compos. Mater, vol.19, p.67, 1985.
DOI : 10.1177/002199838501900105

N. E. Dowling, K. S. Prasad, and R. Narayanasamy, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 2012.

J. Higuet, T. Valier-brasier, T. Dehoux, and B. Audoin, Beam distortion detection and deflectometry measurements of gigahertz surface acoustic waves, Rev. Sci. Instrum, vol.82, p.114905, 2011.
DOI : 10.1063/1.3660193

J. Lemaitre and J. Dufailly, Damage measurements, Eng. Fract. Mech, vol.28, p.643, 1987.
DOI : 10.1016/0013-7944(87)90059-2

A. Maurel, V. Pagneux, F. Barra, and F. Lund, Wave propagation through a random array of pinned dislocations: Velocity change and attenuation in a generalized Granato and Lücke theory, Phys. Rev. B, vol.72, p.174111, 2005.

N. Mujica, M. T. Cerda, R. Espinoza, J. Lisoni, and F. Lund, Ultrasound as a probe of dislocation density in aluminum, Acta Mater, vol.60, p.5828, 2012.

F. Barra, R. Espinoza-gonzález, H. Fernández, F. Lund, A. Maurel et al., The use of ultrasound to measure dislocation density, JOM, vol.67, p.1856, 2015.

M. W. Barsoum, M. Radovic, T. Zhen, P. Finkel, and S. R. Kalidindi, Dynamic Elastic Hysteretic Solids and Dislocations, Phys. Rev. Lett, vol.94, p.85501, 2005.
DOI : 10.1103/physrevlett.94.085501

N. Rauter, R. Lammering, and T. Kühnrich, On the detection of fatigue damage in composites by use of second harmonic guided waves, Compos. Struct, vol.152, p.247, 2016.

M. Amura and M. Meo, Prediction of residual fatigue life using nonlinear ultrasound, Smart Mater. Struct, vol.21, p.45001, 2012.
DOI : 10.1088/0964-1726/21/4/045001

D. Farkas, M. Willemann, and B. Hyde, Atomistic Mechanisms of Fatigue in Nanocrystalline Metals, Phys. Rev. Lett, vol.94, p.165502, 2005.

M. A. Meyers, A. Mishra, and D. J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci, vol.51, p.427, 2006.