J. L. Bennetzen, Transposable elements, gene creation and genome rearrangement in flowering plants, Current opinion in genetics & development, vol.15, pp.621-627, 2005.

C. Biemont and C. Vieira, Genetics: junk DNA as an evolutionary force, Nature, issue.443, pp.521-524, 2006.

A. P. De-koning, W. Gu, T. A. Castoe, M. A. Batzer, and D. D. Pollock, Repetitive elements may comprise over two-thirds of the human genome, PLoS Genet, vol.7, p.1002384, 2011.

C. Feschotte and E. J. Pritham, DNA transposons and the evolution of eukaryotic genomes, Annu. Rev. Genet, vol.41, pp.331-368, 2007.

B. Chénais, A. Caruso, S. Hiard, and N. Casse, The impact of transposable elements on

K. C. Halling, C. R. Lazzaro, R. Honchel, J. A. Bufill, S. M. Powell et al.,

. Lindor, Hereditary desmoid disease in a family with a germline Alu I repeat mutation of the APC gene, Hum. Hered, vol.49, pp.97-102, 1999.

M. R. Wallace, L. B. Andersen, A. M. Saulino, P. E. Gregory, T. W. Glover et al., A de novo Alu insertion results in neurofibromatosis type 1, Nature, vol.353, pp.864-866, 1991.

Y. Miki, T. Katagiri, F. Kasumi, T. Yoshimoto, and Y. Nakamura, Mutation analysis in the BRCA2 gene in primary breast cancers, Nat. Genet, vol.13, pp.245-247, 1996.

E. Teugels, S. De-brakeleer, G. Goelen, W. Lissens, E. Sermijn et al., De novo Alu element insertions targeted to a sequence common to the BRCA1 and BRCA2 genes, Hum. Mutat, vol.26, p.284, 2005.

S. Armaou, I. Konstantopoulou, T. Anagnostopoulos, E. Razis, I. Boukovinas et al.,

G. Xenidis, D. Fountzilas, and . Yannoukakos, Novel genomic rearrangements in the BRCA1 gene detected in Greek breast/ovarian cancer patients, Eur. J. Cancer, vol.43, pp.443-453, 2007.

S. Mazoyer, Genomic rearrangements in the BRCA1 and BRCA2 genes, Hum. Mutat, vol.25, pp.415-422, 2005.

K. P. Yap, P. Ang, I. H. Lim, G. H. Ho, and A. S. Lee, Detection of a novel Alu-mediated BRCA1 exon 13 duplication in Chinese breast cancer patients and implications for genetic testing, Clin. Genet, vol.70, pp.80-82, 2006.

I. Tournier, B. B. Paillerets, H. Sobol, D. Stoppa-lyonnet, R. Lidereau et al.,

F. Mazoyer, A. Coulet, A. Hardouin, A. Chompret, P. Lortholary et al.,

C. Bonadona, B. Maugard, C. Gilbert, T. Nogues, M. Frebourg et al., Significant contribution of germline BRCA2 rearrangements in male breast cancer families, Cancer Res, vol.64, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427664

A. C. Spradling, H. J. Bellen, and R. A. Hoskins, Drosophila P elements preferentially transpose to replication origins, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.15948-15953, 2011.

D. C. Ferreira, C. Oliveira, and F. Foresti, A new dispersed element in the genome of the catfish Hisonotus leucofrenatus (Teleostei: Siluriformes: Hypoptopomatinae), vol.1, pp.103-106, 2011.

O. G. Grushko, M. V. Sharakhova, V. N. Stegnii, and I. V. Sharakhov, Molecular organization of heterochromatin in malaria mosquitoes of the Anopheles maculipennis subgroup, Gene, vol.448, pp.192-197, 2009.

T. Palomeque, J. A. Carrillo, M. Munoz-lopez, and P. Lorite, Detection of a marinerlike element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution, Gene, vol.371, pp.194-205, 2006.

R. Rebollo, M. M. Karimi, M. Bilenky, L. Gagnier, K. Miceli-royer et al., Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms, PLoS Genet, vol.7, p.1002301, 2011.

V. V. Kapitonov and J. Jurka, RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons, PLoS Biol, vol.3, p.181, 2005.

D. C. Van-gent, K. Mizuuchi, and M. Gellert, Similarities between initiation of V(D)J recombination and retroviral integration, Science, pp.1592-1594, 1996.

L. Zhou, R. Mitra, P. W. Atkinson, A. B. Hickman, F. Dyda et al., Transposition of hAT elements links transposable elements and V(D)J recombination, Nature, pp.995-1001, 2004.

J. M. Jones and M. Gellert, The taming of a transposon: V(D)J recombination and the immune system, Immunol. Rev, vol.200, pp.233-248, 2004.

Y. V. Reddy, E. J. Perkins, and D. A. Ramsden, Genomic instability due to V(D)J recombination-associated transposition, Genes Dev, vol.20, pp.1575-1582, 2006.

M. Chatterji, C. L. Tsai, and D. G. Schatz, Mobilization of RAG-generated signal ends by transposition and insertion in vivo, Mol. Cell. Biol, vol.26, pp.1558-1568, 2006.

T. L. Messier, J. P. O'neill, S. M. Hou, J. A. Nicklas, and B. A. Finette, In vivo transposition mediated by V(D)J recombinase in human T lymphocytes, EMBO J, vol.22, pp.1381-1388, 2003.

A. Agrawal, Q. M. Eastman, and D. G. Schatz, Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system, Nature, vol.394, pp.744-751, 1998.

K. Hiom, M. Melek, and M. Gellert, DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations, Cell, vol.94, pp.463-470, 1998.

M. R. Lieber, K. Yu, and S. C. Raghavan, Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations, DNA Repair (Amst), issue.5, pp.1234-1245, 2006.

R. Marculescu, K. Vanura, B. Montpellier, S. Roulland, T. Le et al.,

B. Mcblane and . Nadel, Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures, DNA Repair (Amst), vol.5, pp.1246-1258, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00165587

R. Cordaux, S. Udit, M. A. Batzer, and C. Feschotte, Birth of a chimeric primate gene by capture of the transposase gene from a mobile element, Proc. Natl. Acad. Sci. U. S. A, issue.103, pp.8101-8106, 2006.

S. H. Lee, M. Oshige, S. T. Durant, K. K. Rasila, E. A. Williamson et al., The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair, Proc. Natl. Acad. Sci

U. S. , , vol.102, pp.18075-18080, 2005.

D. Liu, J. Bischerour, A. Siddique, N. Buisine, Y. Bigot et al., The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase, Mol. Cell. Biol, vol.27, pp.1125-1132, 2007.

Y. Roman, M. Oshige, Y. J. Lee, K. Goodwin, M. M. Georgiadis et al., Biochemical characterization of a SET and transposase fusion protein, Metnase: its DNA binding and DNA cleavage activity, Biochemistry, vol.46, pp.11369-11376, 2007.

B. D. Beck, S. S. Lee, E. Williamson, R. A. Hromas, and S. H. Lee, Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair, Biochemistry, vol.50, pp.4360-4370, 2011.

L. P. De-haro, J. Wray, E. A. Williamson, S. T. Durant, L. Corwin et al.,

S. H. Osheroff, R. Lee, J. A. Hromas, and . Nickoloff, Metnase promotes restart and repair of stalled and collapsed replication forks, Nucleic Acids Res, vol.38, pp.5681-5691, 2010.

R. Hromas, J. Wray, S. H. Lee, L. Martinez, J. Farrington et al.,

E. A. Nickoloff and . Williamson, The human set and transposase domain protein Metnase interacts with DNA Ligase IV and enhances the efficiency and accuracy of non-homologous endjoining, DNA Repair (Amst), vol.7, pp.1927-1937, 2008.

M. Shaheen, E. Williamson, J. Nickoloff, S. H. Lee, and R. Hromas, Metnase/SETMAR: a domesticated primate transposase that enhances DNA repair, replication, and decatenation, Genetica, vol.138, pp.559-566, 2010.

J. Wray, E. A. Williamson, S. Chester, J. Farrington, R. Sterk et al., The transposase domain protein Metnase/SETMAR suppresses chromosomal translocations, Cancer Genet. Cytogenet, vol.200, pp.184-190, 2010.

J. Wray, E. A. Williamson, M. Royce, M. Shaheen, B. D. Beck et al., Metnase mediates resistance to topoisomerase II inhibitors in breast cancer cells, vol.4, p.5323, 2009.

J. Wray, E. A. Williamson, S. Sheema, S. H. Lee, E. Libby et al., Metnase mediates chromosome decatenation in acute leukemia cells, Blood, vol.114, pp.1852-1858, 2009.

K. D. Goodwin, H. He, T. Imasaki, S. H. Lee, and M. M. Georgiadis, Crystal structure of the human Hsmar1-derived transposase domain in the DNA repair enzyme Metnase, Biochemistry, pp.5705-5713, 2010.

S. Seisenberger, C. Popp, and W. Reik, Retrotransposons and germ cells: reproduction, death, and diversity, Biol. Rep, vol.2, 1000.

J. P. Ross, K. N. Rand, and P. L. Molloy, Hypomethylation of repeated DNA sequences in cancer, Epigenomics, vol.2, pp.245-269, 2010.

Y. Watanabe and M. Maekawa, Methylation of DNA in cancer, Adv. Clin. Chem, p.52, 2010.

H. Kano, I. Godoy, C. Courtney, M. R. Vetter, G. L. Gerton et al.,

J. Kazazian, L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism, Genes Dev, vol.23, pp.1303-1312, 2009.

N. Lane, W. Dean, S. Erhardt, P. Hajkova, A. Surani et al., Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse, Genesis, vol.35, pp.88-93, 2003.

S. P. Kale, L. Moore, P. L. Deininger, and A. M. Roy-engel, Heavy metals stimulate human LINE-1 retrotransposition, Int. J. Environ. Res. Public Health, vol.2, pp.14-23, 2005.

M. El-sawy, S. P. Kale, C. Dugan, T. Q. Nguyen, V. Belancio et al.,

P. L. Engel and . Deininger, Nickel stimulates L1 retrotransposition by a post-transcriptional mechanism, J. Mol. Biol, vol.354, pp.246-257, 2005.

K. Fujino, S. N. Hashida, T. Ogawa, T. Natsume, T. Uchiyama et al., Temperature controls nuclear import of Tam3 transposase in Antirrhinum, Plant J, vol.65, pp.146-155, 2011.

M. A. Grandbastien, C. Audeon, E. Bonnivard, J. M. Casacuberta, B. Chalhoub et al.,

Q. H. Costa, D. Le, M. Melayah, C. Petit, S. M. Poncet et al., Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae, Cytogenet. Genome Res, vol.110, pp.229-241, 2005.

Y. Kimura, Y. Tosa, S. Shimada, R. Sogo, M. Kusaba et al., OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses, Plant Cell Physiol, vol.42, pp.1345-1354, 2001.

W. J. Miller and P. Capy, Mobile genetic elements as natural tools for genome evolution, Methods Mol. Biol, vol.260, pp.1-20, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00121623

A. M. Handler and S. P. Gomez, P element excision in Drosophila is stimulated by gammairradiation in transient embryonic assays, Genet. Res, vol.70, pp.75-78, 1997.

M. El-sawy and P. Deininger, Tandem insertions of Alu elements, vol.108, pp.58-62, 2005.

A. S. Wilson, B. E. Power, and P. L. Molloy, DNA hypomethylation and human diseases, Biochim. Biophys. Acta, pp.138-162, 2007.

R. Chatterjee and C. Vinson, CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression, Biochim. Biophys. Acta, pp.763-770, 2012.

H. L. Asch, J. S. Winston, S. B. Edge, P. C. Stomper, and B. B. Asch, Down-regulation of gelsolin expression in human breast ductal carcinoma in situ with and without invasion, Breast Cancer Res. Treat, vol.55, pp.179-188, 1999.

A. R. Florl, C. Steinhoff, M. Muller, H. H. Seifert, C. Hader et al., Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation, Br. J. Cancer, pp.985-994, 2004.

W. A. Schulz and M. J. Hoffmann, Epigenetic mechanisms in the biology of prostate cancer, Semin. Cancer Biol, vol.19, pp.172-180, 2009.

L. C. Li, S. T. Okino, and R. Dahiya, DNA methylation in prostate cancer, Biochim. Biophys

. Acta, , pp.87-102, 2004.

M. J. Kim, J. A. White-cross, L. Shen, J. P. Issa, and A. Rashid, Hypomethylation of long interspersed nuclear element-1 in hepatocellular carcinomas, Mod. Pathol, vol.22, pp.442-449, 2009.

C. M. Suter, D. I. Martin, and R. L. Ward, Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue, Int. J. Colorectal Dis, vol.19, pp.95-101, 2004.

R. C. Iskow, M. T. Mccabe, R. E. Mills, S. Torene, W. S. Pittard et al.,

P. M. Van-meir, S. E. Vertino, and . Devine, Natural mutagenesis of human genomes by endogenous retrotransposons, Cell, pp.1253-1261, 2010.

E. Lee, R. Iskow, L. Yang, O. Gokcumen, P. Haseley et al.,

P. J. Kharchenko and . Park, Landscape of Somatic Retrotransposition in Human Cancers, Science, 2012.

J. Lu, G. Getz, E. A. Miska, E. Alvarez-saavedra, J. Lamb et al., MicroRNA expression profiles classify human cancers, Nature, vol.435, pp.834-838, 2005.

B. Czech and G. J. Hannon, Small RNA sorting: matchmaking for Argonautes, Nat. Rev. Genet, vol.12, pp.19-31, 2011.

R. K. Slotkin and R. Martienssen, Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet, vol.8, pp.272-285, 2007.

E. Kolomietz, M. S. Meyn, A. Pandita, and J. A. Squire, The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors, Genes Chromosomes Cancer, vol.35, pp.97-112, 2002.

B. Elliott, C. Richardson, and M. Jasin, Chromosomal translocation mechanisms at intronic alu elements in mammalian cells, Mol. Cell, vol.17, pp.885-894, 2005.

D. M. Weinstock, C. A. Richardson, B. Elliott, and M. Jasin, Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells, DNA Repair (Amst), issue.5, pp.1065-1074, 2006.

P. Medstrand, L. N. Van-de-lagemaat, C. A. Dunn, J. R. Landry, D. Svenback et al.,

. Mager, Impact of transposable elements on the evolution of mammalian gene regulation, Cytogenet. Genome Res, vol.110, pp.342-352, 2005.

V. Perepelitsa-belancio and P. Deininger, RNA truncation by premature polyadenylation attenuates human mobile element activity, Nat. Genet, vol.35, pp.363-366, 2003.

A. M. Roy-engel, M. El-sawy, L. Farooq, G. L. Odom, V. Perepelitsa-belancio et al., Human retroelements may introduce intragenic polyadenylation signals, Cytogenet. Genome Res, vol.110, pp.365-371, 2005.

N. Sela, B. Mersch, N. Gal-mark, G. Lev-maor, A. Hotz-wagenblatt et al., Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome, Genome Biol, vol.8, p.127, 2007.

R. Sorek, The birth of new exons: mechanisms and evolutionary consequences, RNA, vol.13, pp.1603-1608, 2007.

X. H. Zhang and L. A. Chasin, Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons, Proc. Natl. Acad. Sci. U. S. A, issue.103, pp.13427-13432, 2006.

G. Bourque, B. Leong, V. B. Vega, X. Chen, Y. L. Lee et al.,

C. L. Ruan, H. H. Wei, E. T. Ng, and . Liu, Evolution of the mammalian transcription factor binding repertoire via transposable elements, Genome Res, vol.18, pp.1752-1762, 2008.

L. Teng, H. A. Firpi, and K. Tan, Enhancers in embryonic stem cells are enriched for transposable elements and genetic variations associated with cancers, Nucleic Acids Res, vol.39, pp.7371-7379, 2011.

T. Wang, J. Zeng, C. B. Lowe, R. G. Sellers, S. R. Salama et al.,

D. Brachmann and . Haussler, Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.18613-18618, 2007.

I. Tanaka and H. Ishihara, Enhanced expression of the early retrotransposon in C3H mousederived myeloid leukemia cells, Virology, vol.280, pp.107-114, 2001.

P. Brulet, M. Kaghad, Y. S. Xu, O. Croissant, and F. Jacob, Early differential tissue expression of transposon-like repetitive DNA sequences of the mouse, Proc. Natl. Acad. Sci

U. S. , , vol.80, pp.5641-5645, 1983.

D. , Activation of oncogenes by transposable elements, Biochemical Society symposium, vol.51, pp.183-196, 1986.

N. G. Copeland and N. A. Jenkins, Harnessing transposons for cancer gene discovery, Nat. Rev. Cancer, vol.10, pp.696-706, 2010.

A. G. Uren, J. Kool, A. Berns, and M. Van-lohuizen, Retroviral insertional mutagenesis: past, present and future, Oncogene, vol.24, pp.7656-7672, 2005.

S. F. Landrette, J. C. Cornett, T. K. Ni, M. W. Bosenberg, and T. Xu, piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART) for genetic screens in mice, PLoS One, vol.6, p.26650, 2011.

R. Rad, L. Rad, W. Wang, J. Cadinanos, G. Vassiliou et al.,

. Bradley, PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice, Science, vol.330, pp.1104-1107, 2010.

A. J. Dupuy, K. Akagi, D. A. Largaespada, N. G. Copeland, and N. A. Jenkins, Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system, Nature, vol.436, pp.221-226, 2005.

L. S. Collier, C. M. Carlson, S. Ravimohan, A. J. Dupuy, and D. A. Largaespada, Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse, Nature, vol.436, pp.272-276, 2005.

M. Mcgrail, J. M. Hatler, X. Kuang, H. K. Liao, K. Nannapaneni et al., Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid tumor formation in zebrafish, PLoS One, vol.6, p.18826, 2011.

F. Cui, M. V. Sirotin, and V. B. Zhurkin, Impact of Alu repeats on the evolution of human p53 binding sites, Biol. Direct, vol.6, p.2, 2011.

J. E. Hambor, J. Mennone, M. E. Coon, J. H. Hanke, and P. Kavathas, Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene, Mol. Cell. Biol, vol.13, pp.7056-7070, 1993.

G. W. Humphrey, E. W. Englander, and B. H. Howard, Specific binding sites for a pol III transcriptional repressor and pol II transcription factor YY1 within the internucleosomal spacer region in primate Alu repetitive elements, Gene Expr, vol.6, pp.151-168, 1996.

S. L. Oei, V. S. Babich, V. I. Kazakov, N. M. Usmanova, A. V. Kropotov et al., Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters, Genomics, vol.83, pp.873-882, 2004.

F. J. Piedrafita, R. B. Molander, G. Vansant, E. A. Orlova, M. Pfahl et al., An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormoneretinoic acid response element, J. Biol. Chem, vol.271, pp.14412-14420, 1996.

G. Vansant and W. F. Reynolds, The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.8229-8233, 1995.

J. H. Taube, K. Allton, S. A. Duncan, L. Shen, and M. C. Barton, Foxa1 functions as a pioneer transcription factor at transposable elements to activate Afp during differentiation of embryonic stem cells, The Journal of biological chemistry, vol.285, pp.16135-16144, 2010.

H. C. Reinhardt and B. Schumacher, The p53 network: cellular and systemic DNA damage responses in aging and cancer, Trends Genet, vol.28, pp.128-136, 2012.

T. Soussi, TP53 mutations in human cancer: database reassessment and prospects for the next decade, Adv. Cancer Res, vol.110, pp.107-139, 2011.

R. J. White, RNA polymerase III transcription and cancer, Oncogene, vol.23, pp.3208-3216, 2004.

R. B. Tang, H. Y. Wang, H. Y. Lu, J. Xiong, H. H. Li et al., Increased level of polymerase III transcribed Alu RNA in hepatocellular carcinoma tissue, Mol. Carcinog, vol.42, pp.93-96, 2005.

H. C. Kopera, J. B. Moldovan, T. A. Morrish, J. L. Garcia-perez, and J. V. Moran, Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.20345-20350, 2011.

T. A. Morrish, J. L. Garcia-perez, T. D. Stamato, G. E. Taccioli, J. Sekiguchi et al., Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres, Nature, pp.208-212, 2007.

I. R. Arkhipova and H. G. Morrison, Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.14497-14502, 2001.

H. Fujiwara, M. Osanai, T. Matsumoto, and K. K. Kojima, Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori, Chromosome Res, vol.13, pp.455-467, 2005.

E. A. Gladyshev and I. R. Arkhipova, Telomere-associated endonuclease-deficient Penelopelike retroelements in diverse eukaryotes, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.9352-9357, 2007.

J. F. Riou, D. Gomez, J. L. Mergny, L. Guittat, R. Paterski et al.,

. Trentesaux, Bull. Cancer, vol.92, pp.13-22, 2005.

J. W. Shay and W. E. Wright, Role of telomeres and telomerase in cancer, Semin. Cancer Biol, vol.21, pp.349-353, 2011.

B. T. Brett, K. E. Berquam-vrieze, K. Nannapaneni, J. Huang, T. E. Scheetz et al., Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty-induced tumors, PLoS One, vol.6, p.24668, 2011.

J. De-jong, J. De-ridder, L. Van-der-weyden, N. Sun, M. Van-uitert et al.,

J. Lohuizen, D. J. Jonkers, L. F. Adams, and . Wessels, Computational identification of insertional mutagenesis targets for cancer gene discovery, Nucleic Acids Res, vol.39, p.105, 2011.

K. M. Mann, J. M. Ward, C. C. Yew, A. Kovochich, D. W. Dawson et al.,

T. E. Brett, A. J. Sheetz, D. K. Dupuy, A. V. Chang, N. Biankin et al.,

A. G. Grimmond, D. J. Rust, N. A. Adams, N. G. Jenkins, and . Copeland, Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.5934-5941, 2012.

T. K. Starr, P. M. Scott, B. M. Marsh, L. Zhao, B. L. Than et al., A Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.5765-5770, 2011.
DOI : 10.1073/pnas.1018012108

URL : http://www.pnas.org/content/108/14/5765.full.pdf