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Abstract

This paper focuses on the transient regime of wave amplitudegrowth and stabilization occur-

ing in a standing wave thermoacoustic engine. Experiments are performed on a simple apparatus

consisting of an open ended thermoacoustic oscillator withatmospheric air as working uid. The

results show that, even in that simple device, the transientregime leading to steady state sound

exhibits complicated dynamics, like the systematic overshoot of wave amplitude before its �nal

stabilization, and the spontaneous and periodic switch on/o� of the thermoacoustic instability

at constant heat power supply. A simpli�ed model is then presented which describes wave am-

plitude growth from the coupled equations describing thermoacoustic ampli�cation and unsteady

heat transfer. In this model, the assumption of a one-dimensional and exponential temperature

pro�le is retained and the equations describing heat transfer through the thermoacoustic core are

substantially simpli�ed into a set of ordinary di�erential equations. These equations include the

description of two processes saturating wave amplitude growth, i.e. thermoacoustic heat pumping

and heat convection by acoustic streaming. It is notably shown that accounting for the e�ect of

acoustic streaming allows to reproduce qualitatively the overshoot process.

PACS numbers: 43.35.Ud,43.25.Nm
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I. INTRODUCTION

Thermoacoustic engines belong to a type of heat engines in which the application of

a temperature gradient along an open-cell porous medium placed inside an acoustic res-

onator results in the onset of large amplitude self-sustained acoustic waves. These kind of

engines have been studied for about three decades, but some e�ort is still devoted to the

description of their operation. The well-established linear (or weakly nonlinear) theory of

thermoacoustics [1, 2] is largely used for the design of highpower (typically up to a few

kilowatts) thermoacoustic engines, and for the predictionof their performances with reason-

able accuracy [3]. However, one can �nd in the litterature some experimental evidences of

complicated e�ects during the transient regime of wave amplitude growth, which cannot be

predicted by a steady-state theory. For example, the existence of a hysteretic loop in the

onset and damping of the engine has been reported in both standing wave [4] or traveling

wave devices [5]; complicated dynamics of the acoustic oscillations have also been reported

in various devices, like the periodic switch on/o� of thermoacoustic instability [6{9], the

\double-threshold e�ect" [10] or the \�sh-bone like instability" [11]. All of these e�ects

indicate that thermoacoustic engines can operate as multistable systems, and also that such

complicated dynamical behaviors are due to the existence ofdi�erent time scales in the

process of wave amplitude saturation. That is the reason whythe development of adequate

simulation tools is still needed to describe the evolution of acoustic wave amplitude after

the onset of thermoacoustic instability. On the one hand, direct numerical simulation [12{

15] seems to be the only way to reproduce quantitatively the e�ects mentioned above, but

it is still limited by large computation times inherent to the complicated physics and the

multiple time and space scales involved in the description of thermoacoustic engines. On

the other hand, analytical models are often based on substantial approximations, but one

can be motivated by the development of some phenomenological approach aiming at repro-

ducing qualitatively the experiments in order to get deeperunderstanding of the operation

of thermoacoustic engines.

Di�erent approaches have been presented concerning the analytical description of the

transient regime. Karpov et al. [16] proposed a time-domaindescription of the evolution

of thermoacoustic instability combined with a multiple time scales method to calculate

the initial wave amplitude growth and its saturation due to higher harmonics generation
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in the case of a standing wave engine with a �xed temperature gradient. De Waele [17]

presented a simpli�ed model based on the lumped element description of thermoacoustic

engines, and he performed calculations of the transient regime in a so-called travelling wave

thermoacoustic Stirling engine [18], in which the e�ect saturating the wave amplitude growth

is the cooling e�ect due to acoustic oscillations in the thermoacoustic core. Penelet et al.

[9, 19] developped a theoretical model of an annular thermoacoustic engine, in which the

equation characterizing the variation of acoustic pressure amplitude is combined with the

equations describing unsteady heat transfer through the thermoacoustic core. They took

into account the inuence of various nonlinear e�ects such as minor losses at the edges of the

stack, higher harmonics generation, heat pumping by acoustic waves, and heat convection by

the so-called Gedeon streaming [20]. It is worth noting thatonly a few papers[9, 13, 14, 19]

provide direct comparisons of calculated transient regimes with experimental data, and to

our knowledge, most of the complicated e�ects mentioned above cannot be reproduced by

the models, even for the simplest thermoacoustic oscillators which can be built, like the

Sondhaus tube or the so-called thermoacoustic laser[21].

In this paper, our objective is to provide a simpli�ed model of a standing wave ther-

moacoustic oscillator, keeping in mind our objective to capture some of the complicated

dynamical behaviors observed in experiments. The main approximations retained in the

model concern the description of heat transfer through the thermoacoustic core, but some

important e�ects involving the mutual inuence of acoustic and temperature �elds are taken

into account. In particular, the heat convected by Rayleighstreaming can be included (with

great simpli�cation) in the model. In section II the experimental apparatus is described,

and typical transient regimes of wave amplitude growth are presented. In section III, the

theoretical model is presented, while section IV provides comparisons between experiments

and theory.

II. EXPERIMENTS

The system under study is a basic thermoacoustic standing wave engine, which is quite

easy to build [21] and often used as a demonstration apparatus for graduate students. A

photograph of this thermoacoustic oscillator is presentedin Fig. 1. It consists of a glass

tube (length L=49 cm, inner radius r i =26 mm, outer radius re=30 mm) open to free space
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at one end, and closed by a rigid piston at the other end. The core of the engine, i.e. the

stack, is an open cell porous cylinder (radiusr i , length ds = 48 mm) which is inserted

into the waveguide. This stack is made up of a 600 CPSI (Cells Per Square Inch) ceramic

catalyst with multiple square channels of sectiona � a = 0:45mm � 0:45mm [see Fig 1

(b)]. In this device, imposing a large temperature gradientalong the stack leads to the

onset of self-sustained acoustic waves oscillating at the frequency f of the most unstable

acoustic mode (generally,f � c0=(4L) where c0 stands for the adiabatic sound speed at

room temperatureT1 ). Heat is supplied to one side of the stack using an electrical heat

resistance wire (Nichrome wire, 36 cm in length, 0.25 mm in diameter) regularly coiled

through the stack end [see Fig. 1 (b)], and connected to a DC electrical power supply (MCP

Lab Electronics, model M10-TP-305-C). The only instrumentation of the thermoacoustic

oscillator is a 1=4 inch condenser microphone (model GRAS type 40BP) ush mounted

through the rigid piston. Data acquisition is realized with the standard soundcard of a

portable computer.

A schematic drawing of the apparatus, comprising the de�nition of an appropriate system

of coordinates, is presented in Fig. 2. The �rst step in studying this device consists in

determining the heat power supplyQonset which is necessary to initiate self-sustained acoustic

waves. This critical valueQonset of heat supply depends on the positionxs of the stack

along the waveguide, and the corresponding stability curveis presented in Fig. 3. The

experimental protocol used to obtainQonset - or more precisely the range of heat power

Q comprising Qonset - in function of xs is as follows: (1) �x a position xs of the stack,

without heating ; (2) apply an electrical current increment � I = 0:1A; (3) wait for 10

minutes (stabilization of the thermal �eld); (4) repeat steps (2) and (3) until the onset of

thermoacoustic instability. As shown in Fig. 3, there exists an optimum position of the

stack, xs � 35cm, corresponding to the lowerQonset . Note that a theoretical stability curve

is also presented in Fig. 3, which will be discussed in section IV.

Once the stability curve is determined, it is then possible to measure the evolution of

wave amplitude growth. For each of the measurements presented in the following, the

heat power supply is preliminarily set to a valueQ0 slightly below Qonset . A small � Q

increment on heat power supply is then su�cient for the acoustic wave to be generated in

the device at a frequencyf � c0=(4L) (i.e. the frequency of the �rst mode of the empty

resonator). Typical transient regimes of wave amplitude growth are presented in Figs. 4
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and 5, for various increments of heat supply �Q, and for two positions of the stack along

the waveguide. Figure 4 shows the transient and steady statewaveform of acoustic pressure

p(L; t ), for di�erent values of � Q, and when the stack is placed at positionxs = 36:5 cm

(i.e. next to the closed end of the resonator). The results show that there exists a systematic

overshoot of wave amplitude growth before its �nal stabilization, and that the higher the

increment � Q is, the faster will be reached stabilization. Figure 5 showsthe measured

transient regimes when the stack is placed at positionxs = 26:5 cm. In that case, the

evolution with time of acoustic pressure amplitude exhibits more complicated dynamics: at

moderate increments �Q of heat power above its initial valueQ0, the system turns on and

o� spontaneously and almost periodically. Also, the switchon/o� period decreases when

� Q increases, so that after some critical value �Qcr of the heat increment, the acoustic wave

�nally stabilizes to a �nite value (0 :16Q0 < � Qcr � 0:24Q0 if xs = 26:5 cm, as depicted in

Fig. 5). As mentioned before, similar switch on/o� processes have already been reported

in the litterature concerning both standing wave [6, 7] or travelling wave engines [8, 9].

Moreover, some of these papers [7{9] also report that the evolution of acoustic pressure

amplitude is accompanied by signi�cant variations of the temperature �eld in the stack and

in the thermal bu�er tube (i.e. the region of the waveguide where the temperature �eld is

heterogeneous). So, it seems to be clearly admitted that such an e�ect is mostly due to the

reverse inuence of the acoustic �eld on the temperature �eld (heat pumping by acoustic

waves, acoustic streaming). We performed several measurements of the transient regimes for

di�erent positions of the stack, and we found that the closeris the stack from the open end

of the resonator, the higher is the critical heat power increment � Qcr . Moreover, we did not

observe any switch on/o� process when the stack positionxs is higher than xs = 31:5 cm

(note however that this process might have happened if we hadused lower � Q increments).

The observation of the switch on/o� process thus depends on the stack position along the

waveguide.
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III. THEORY

A. Thermoacoustic ampli�cation

In the device under consideration, the frequency and ampli�cation rate of self-sustained

acoustic waves depend on the geometry of the device and on thespatial distribution of

the temperature �eld. If the instantaneous temperature �eld T(x; t ) is known, one can

compute both the instantaneous thermoacoustic ampli�cation rate � ampl [T(x; t )] and the

corresponding onset angular frequency 
 [T(x; t )], provided that the assumption of a quasi-

steady state,� ampl << 
, can be retained. In this paper, we derive the essential steps of the

calculations without details: this problem has been treated recently [22] in a more general

situation. Assuming that harmonic plane waves are propagating along the duct, the acoustic

pressurep(x; t ) and acoustic volume velocityu(x; t ) are written in the following form:

� (x; t ) = <
�

~� (x)e� j!t
�

; (1)

wherej 2 = � 1, � may be eitherp or u, ~� denotes the complex amplitude of� , < () denotes the

real part of a complex number, and! stands for the angular frequency of acoustic oscillations.

The thermoacoustic device is then separated into two parts,i.e. the thermoacoustic core

comprising both the stack and the waveguide region where temperature is inhomogeneous

(x 2 [xs � ds; L], see Fig. 2), and the cold part of the waveguide (x 2 [0; xs � ds]) where the

uid is assumed to be at room temperatureT1 . The propagation of acoustic waves through

the thermoacoustic core can be described on the whole by an acoustical two-port relating

the complex amplitudes of acoustic pressure and volume velocity at both sides:
0

@ ~p(L)

~u(L)

1

A =

0

@ � pp � pu

� up � uu

1

A �

0

@ ~p(xs � ds)

~u(xs � ds)

1

A ; (2)

where the coe�cients � ij depend on the geometrical and thermophysical properties ofthe

components, on the temperature distributionT(x) and on the angular frequency! . The

determination of the coe�cients � ij requires to describe acoustic propagation in both the

thermal bu�er tube ( x 2 [xs; L]) and the stack (x 2 [xs � ds; xs]), in the presence of

an inhomogeneous temperature �eld. This problem has been addressed by Rott [1] who

established the wave equation associated to this problem (e.g. Eq. (54) in ref. [2]). This

wave equation is here transformed into an integral Volterraequation of the second kind [23],
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which allows to compute the coe�cients � ij (! ) for a �xed temperature distribution T(x).

The details of derivation are not provided in this paper due to a need of conciseness, but the

reader can report to ref. [24], where both the solving process and the explicit expression of

the transfer matrix (Eq. 19 in ref [24]) are provided. Note also that in the remaining of the

paper, the stack which actually consists of multiple square-channels of geometrical radius

a=2 is assumed equivalent to a stack of multiple cylindrical channels with the same radius

r s = a=2 (the cylindrical channel is formally more easy to treat than the square channel).

Then, neglecting sound radiation at the open end of the resonator (~p(x = 0) = 0 ), the lossy

propagation of acoustic waves in the remaining of the waveguide (x 2 [0; xs � ds]) is taken

into account by the reected impedance

Zs =
~p(xs � ds)
~u(xs � ds)

= jZ c tan (k (xs � ds)) ; (3)

wherek is the complex wavenumber de�ned as

k =
!
c0

�
1 + (  � 1) f �

1 � f �

� 1=2

; (4)

and whereZc is the characteristic impedance of the lossy duct, de�ned as

Zc =
� f c0

�r 2
i

[(1 + (  � 1) f � ) (1 � f � )]� 1=2 : (5)

In Eqs. (4) and (5), � f and  stand for the density and the speci�c heat ratio of uid,

respectively, and the functionsf � and f � , de�ned as

f �;� =
2r i

(1 + i )� �;�

J1

�
(1 + i ) � �;�

r i

�

J0

�
(1 + i ) � �;�

r i

� (6)

are the well-known functions [2, 25] which characterize theviscous and thermal coupling

between the oscillating uid and the waveguide walls (Jn is the nth order Bessel function of

the �rst kind; � � =
p

2� f =(� f ! ) and � � =
p

2� f =! are the viscous and thermal boundary

layer thicknesses, respectively ;� f and � f stand for dynamic viscosity and thermal di�usivity

of uid at room temperature T1 , respectively). Combining Eqs. (2) and (3) with the

boundary condition ~u(L) = 0 (rigid termination) leads to the characteristic equation

G [!; T (x)] = Zs� up + � uu = 0; (7)

which must be satis�ed. Because Eqs. (2) and (3) are derived in the frequency domain, Eq.

(7) should only be satis�ed at threshold of thermoacoustic instability (i.e. the only situation
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for which a steady-state solution is possible for the acoustic �eld, in the absence of nonlinear

saturating processes), but as it is discussed in detail in ref. [22], one may use Eq. (7) to solve

the unsteady problem of wave amplitude growth. This is realized by allowing the angular

frequency! to have an imaginary part� ampl , i.e. ! = 
 + j� ampl , which means that acoustic

pressure is being ampli�ed (� ampl > 0) or attenuated (� ampl < 0). This assumption enables

to satisfy Eq. (7) even if the instantaneous temperature �eld T(x; t ) does not allow to satisfy

the marginal stability condition. Therefore, if the instantaneous temperature �eld T(x; t )

is known at time t, Eq. (7) can be solved using conventional numerical methodsin order

to obtain both the instantaneous thermoacoustic ampli�cation rate � ampl [T(x; t )] and the

corresponding angular frequency 
 [T(x; t )] of acoustic oscillations[22]. Note however that

the solving approach described above requires to assume that the system is under quasi-

steady state, which means that at the time scale of an acoustic period, the variations of

the temperature �eld are negligible while those of the wave amplitude are not signi�cant

(� ampl << 
). Finally, once the instantaneous thermoacoustic ampli�cation rate � ampl is

known, it is quite direct from Eq. (1) that the time variations of the peak amplitude

of acoustic pressure, and in particular the peak pressureP(t) at position x = L where the

microphone is ush-mounted, are described with the following ordinary di�erential equation:

d P
dt

= � ampl P: (8)

B. Unsteady heat transfer

The main simpli�cation of the model presented in this paper concerns the description of

unsteady heat transfer through the thermoacoustic core. Actually, this description of heat

transfer is so much simpli�ed in the following that one cannot expect, at best, anything

else than qualitative agreement between experiments and theory. It is �rst considered here

that the glass tube is a perfect thermal reservoir: its temperature is assumed to be constant

at room temperature T1 (even if heat is absorbed from the inside of the tube). It is also

considered that the thermophysical properties (density, heat capacity, thermal conductivity)

of the stack walls and of the uid do not depend on temperature(except in section III D 1

where the velocity of acoustic streaming is estimated). Moreover, the stack, which consist of

both solid walls and air, is treated as a homogeneous medium of density � s, thermal conduc-

tivity � s and heat capacityCs (these average thermophysical properties are calculated from
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those of both ceramic and air, see Tab.I). Finally, the temperature �eld inside the tube is

assumed to be axisymetric, and the equations describing heat transfer in the thermoacoustic

core are written as follows:

x � xs;
@T(x; t )

@t
= � s

@2T(x; t )
@x2

�
T(x; t ) � T1

� s
; (9a)

x � xs;
@T(x; t )

@t
= � f

@2T(x; t )
@x2

�
T(x; t ) � T1

� f
: (9b)

In Eqs. (9), T(x; t ) refers to the unsteady cross-sectional average temperature inside the

tube at position x, and � s;f stand for the thermal di�usivities of the stack (subscript \s")

and of the uid in the waveguide (subscript \f"). The last terms on the right-hand-side of

Eqs. (9) describe heat transfer between the inside of the duct and its surrounding walls.

The phenomenological coe�cients� f;s are obtained from empirical correlations which can

be found in heat transfer textbooks [26]. While obtaining the analytical expression of the

parameter � f is quite direct, the derivation of � s is less direct, but the details are given in

the appendix of ref. [19]. The numerical values of the thermophysical parameters mentioned

above are summarized in Tab.I. Then, the external thermal action due to the heat power

Q(t) dissipated in the Nichrome wire is taken into account through the following boundary

condition:

� s
@T(x �

s ; t)
@x

� � f
@T(x+

s ; t)
@x

=
Q(t)
�r 2

i
; (10)

describing the continuity of heat ux at the hot side of the stack, where� s and � f stand for

the thermal conductivities of the stack and the uid, respectively. In addition to the sim-

pli�cations mentioned above, it is also assumed that the spatial distribution of the thermal

�eld is exponential. More precisely, introducing the spacevariable z = x � xs, we seek a

solution in the form:

z � 0; T(z; t) � T1 + � T(t)ez=ls (t ) ; (11a)

z � 0; T(z; t) � T1 + � T(t)e� z=lf (t ) ; (11b)

where � T(t) = T(z = 0; t) � T1 , and where the variablesls(t) and l f (t) are typical lengths

which are representative of the actual temperature distribution and its variations with time.
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Then, introducing these solutions in Eqs. (9) leads to the following equations:

d � T
dt

�
z
l2
s
� T

d ls
dt

= � s
� T
l2
s

�
� T
� s

; (12a)

d � T
dt

+
z
l2
f

� T
d lf
dt

= � f
� T
l2
f

�
� T
� f

: (12b)

Therefore, the assumption of a time varying exponential temperature pro�le in Eqs. (11)

implies that the parameters characterizing the spatial distribution of temperature (ls, l f ,

� T) do not depend on the space variablez, but the the problem still depends onz in Eqs.

(12). Carrying on in our will to give priority to simplicity a t the expense of rigour, the

space variablez is thus replaced in Eqs. (12a) and (12b) by its characteristic values� ls(t)

and l f (t), respectively. This means that it is considered that the temperature variations at

positions z = � ls and z = l f are representative of the global temperature �eld. Finally,

accounting for this new assumption, and reporting also Eqs.(11a) and (11b) in Eq. (10),

the description of unsteady heat transfer reduces to the following set of equations:

ls
� T

d � T
dt

+
d ls
dt

=
� s

ls
�

ls
� s

(13a)

l f
� T

d � T
dt

+
d lf
dt

=
� f

l f
�

l f
� f

(13b)
�

� s

ls
+

� f

l f

�
� T =

Q
�r 2

i
: (13c)

The combination of Eqs. (13a - 13c) with Eq. (8) allows to describe the initial start-up

of self-sustained acoustic waves when the device is submitted to the external heat input

Q(t). However, the equations mentioned above would describe the inde�nite growth of

wave amplitude (as soon asQ > Q onset) if the nonlinear e�ects saturating the ampli�cation

process are not taken into account. In the following, two processes are considered to describe

the stabilization of acoustic amplitude, i.e. the thermoacoustic heat ux due to acoustic

oscillations along the stack, and the heat convection by acoustic streaming. Note that there

exists additional mechanisms which may play a role in the saturation of wave amplitude

growth, like the dissipation of acoustic energy due to geometrical singularities at the edges of

the stack and at the open end of the resonator[27], or like nonlinear propagation in the open-

ended tube [28]. Those processes are voluntarily ignored inthis study, because attention is

focused on the e�ects involving heat transport induced by high amplitude acoustic waves.
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Geometrical properties

Length of the resonator L = 0 :49m

Internal radius of the resonator r i = 2 :6cm

Length of the stack ds = 4 :8cm

E�ective radius of one stack pore r s = 0 :45mm

Thickness of stack walls e = 0 :17mm

Stack porosity
�

� = (2r s )2

(2r s + e)2

�
� = 0 :7075

Thermophysical properties

Volumetric heat capacity Thermal conductivity Dynamic vis cosity

Fluid � f Cf = 1 :2 � 1003Jm � 3K � 1 � f = 2 :26 10� 2 W m� 1K � 1 � f = 1 :84 10� 5 Pa s

Cordierite � cCc = 2600 � 1465Jm � 3K � 1 � c = 3 W m� 1K � 1 -

Stack � sCs = � � f Cf + (1 � �) � cCc � s = � � f + (1 � �) � c -

Heat exchange with resonator walls

Fluid/resonator y: � f = r 2
i � f Cf
3:66� f

� f = 8 :29s

Stack/resonatorz: � s = � s Cs r 2
i ln (2)
2

�
e

� c (2r s + e) + 2r s
29:28� f r s + � ce

�
� s = 288:2s

y see Eq. (A.3) in ref.[19]

z see Eq. (A.12) in ref.[19]

TABLE I. Geometrical and thermophysical properties of the elements constituting the apparatus.

Note that the thermophysical properties of the uid and the s tack material are given at 300 K.

These parameters are assumed constant in the model, except in section III D 1 for � f , � f and � f

when estimating the velocity of acoustic streaming (� f / T � 1, while � f / T � and � f / T � , with

� = 0 :77 [32]).

C. Thermoacoustic heat ux.

In any kind of thermodynamic heat engine, the production of work induces heat transfer

from a hot source to a cold sink. This is also the case in thermoacoustic engines, in which

the production of acoustic work is accompanied by acoustically induced heat transport

[2], with subsequent reduction of the externally imposed temperature gradient. Under the

circumstance where a steep temperature gradient is appliedalong the stack, it is worth

noting that this thermoacoustic heat ux is approximately proportional to the temperature
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gradient dxT, so that, in the frame of the short stack approximation (ds << 4L), the heat

pumping by acoustic waves can be described by an e�ective thermal conductivity [ref. [29],

Eq. (9)] as follows:

� ac =
� f Cf

!
=

 
�f (s)

� � f (s)
�

� 2 � 1

!
< u 2(xs; t) >

�r 2
i

; (14)

whereCf and � stand for the isobaric heat capacity and the Prandtl number of uid, < � � � >

denotes time averaging over an acoustic period, and where= (: : : ) stands for the imaginary

of a complex number. The functionsf (s)
� and f (s)

� are the functions characterizing viscous

and thermal coupling between the oscillating uid and the stack walls and they are obtained

from Eq. (6) in which r i is replaced by the pore radiusr s. The expression of the acoustically

enhanced thermal conductivity� ac can be further simpli�ed by assuming that the acoustic

�eld roughly corresponds to a pure standing wave oscillating at frequencyf 0 = c0=(4L), so

that the spatial distribution u(x; t ) of acoustic volume velocity can be written

u(x; t ) �
�r 2

i P(t)
� f c0

cos(k0x) sin(
 0t); (15)

where k0 = �= (2L), 
 0 = �c 0=(2L), and where P(t) refers to the (slowly varying) peak

amplitude of acoustic pressure at the closed end of the resonator (note that the actual

spatial distribution of the acoustic �eld is not that of a perfect standing wave, because of

thermo-viscous losses and sound scattering by the thermoacoustic core). This leads to the

following expression

� ac �
1
2

Cf

� f 
 0c2
0
=

 
�f (s)

� � f (s)
�

� 2 � 1

!

cos2(k0xs)P2 = � � P2 (16)

of the acoustically enhanced thermal conductivity, which can be included in Eqs. (13c) and

(13a) in the form of an additional term. Finally, the equations describing unsteady heat

transfer, thermoacoustic ampli�cation and heat pumping byacoustic waves are written as

follows:
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ls
� T

d � T
dt

+
d ls
dt

=
� s + � � P2

ls
�

ls
� s

; (17a)

l f
� T

d � T
dt

+
d lf
dt

=
� f

l f
�

l f
� f

; (17b)
�

� s + � � P2

ls
+

� f

l f

�
� T =

Q
�r 2

i
; (17c)

d P
dt

= � ampl P; (17d)

where � � = � � =(� sCs), and where � sCs stand for the average volumetric heat capacity of

the stack (see. Tab I).

This set of equations can be transformed into a system of ordinary di�erential equations

describing the evolutions of the parameters �T, ls, l f and P for appropriate initial conditions

and for some external actionQ(t) on the system. It is however possible to include the

additional process of heat convection by acoustic streaming, as will be discussed in the

following.

D. Acoustic streaming

Acoustic streaming refers to the steady mass ow induced by large amplitude acoustic

oscillations [30]. This unavoidable nonlinear e�ect may bedue for instance to Reynolds

stresses inside viscous boundary layers, or to the di�erence in minor loss phenomenon in a

di�erentially heated stack [31]. Acoustic streaming is discarded in many applications involv-

ing acoustics, but it is now well-established that it must beconsidered in thermoacoustics,

because it convects heat and tends to reduce the temperaturegradient imposed along the

stack. When considering acoustic streaming excitation in thermoacoustic engines, it is quite

usual to dissociate two classes of streaming (though the twoclasses may owe their origin

from the same nonlinear e�ects). The �rst class of streaming, i.e. the so-called Gedeon

streaming [20], is driven in thermoacoustic Stirling engines containing a closed loop path for

the acoustic wave propagation: this is a directional streaming accompanying wave propaga-

tion and carrying a non-zero mass ow through each cross-section of the loop. In most of the

one dimensional models describing thermoacoustic engines, it is possible to account for the

heat convection due to Gedeon streaming (e.g. in the freely available software Delta-EC[3]

or in ref.[9]) and, in practical engines, this directional mass ow can be cancelled using a
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membrane or a jet pump. The second class of streaming, i.e. the Rayleigh streaming, is the

classical boundary layer driven streaming excited at largeacoustic amplitudes in resonant

gas columns: unlike Gedeon streaming, it is characterized by large vortex cells which do not

carry any mass ow across the resonator's cross-section (i.e. the mean mass ow rate is zero).

The spatial distribution of Rayleigh streaming can be obtained from classical theories using

perturbation expansions (e.g. in ref. [32]) but because it is by nature three-dimensional, it

is di�cult to quantify the heat it convects when the basic modeling of the thermoacoustic

device is one-dimensional. Moreover, it is di�cult to cancel this streaming, though one

can diminish its amplitude by tapering the waveguide [33]. In the following, a simpli�ed

approach is presented which attempts to estimate the inuence of Rayleigh streaming in the

operation of a standing wave thermoacoustic engine.

1. Spatial distribution of acoustic streaming at threshold

Before trying to consider acoustic streaming in the equations governing heat transfer in

the thermoacoustic core, it is useful to evaluate its magnitude and its spatial distribution in

the present device. This can be done from the analytical model developped by Bailliet et al.

[32], which allows to calculate both the velocity of acoustic streaming and the second order

mass ux in closed (as opposed to closed-loop) thermoacoustic devices, in the frame of a

weakly nonlinear theory where successive approximations methods can be used. To do this,

we use the protocol described in the following. At �rst, the geometrical and thermophysical

parameters of the thermoacoustic device are �xed accordingto Tab. I. Then, the steady state

temperature �eld T(x) is computed for a �xed heat power supplyQ0 in the absence of sound :

this is quite direct by setting P = 0 and d
dt = 0 in Eqs. (17), which leads tols = ls0 =

p
� s� s,

l f = l f 0 =
p

� f � f and � T = � T0 = ( Q0l f 0 ls0 )=[(�r 2
i )( � sl f 0 + � f ls0 )]. Then, assuming that

the peak pressure amplitudeP at the closed end of the resonator equals 1 Pa, the equations

describing linear acoustic propagation through the deviceare solved to obtain the spatial

distribution of the �rst order acoustic variables (pressure, density, temperature, axial and

transverse particle velocities), which themselves are used as input parameters to compute the

second order time-averaged streaming mass ow _m. More precisely, the spatial distribution

of the axial streaming velocity in a cylindrical tube (the resonator or one stack channel) is

computed from Eq. (16) in ref. [32], and the resulting spatial distribution _m(x; r ) of the
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rate at which mass ows along the axial direction is obtainedusing Eq. (11) in the same

reference. Note that in the following evaluations of _m, the heat power supplyQ0 is �xed to

the xs-dependent valueQonset(xs) in order that the calculated thermoacoustic ampli�cation

coe�cient � ampl (� T; ls; l f ) equals zero (this corresponds to the threshold of thermoacoustic

instability for the considered positionxs of the stack). The calculated streaming mass ow

_m(x; r ) is presented in Fig. 6, whenxs is �xed to xs = 26:5cm and Q0 to Q0 = Qonset(xs) =

20:17W : it is presented in function of both axial and transverse coordinates, in the stack

region [Fig. 6(a)] and in the waveguide region [Fig. 6(b)]. The results show that the average

magnitude of _m is of the same order of magnitude in both the stack and the waveguide, i.e.

around 10� 8kg:m� 2:s� 1 when P = 1 P a. The results also show that the mass ux along the

centerline of one stack pore goes rightwards while that along the centerline of the waveguide

goes leftwards. Note also that in both cases the direction ofmass ow reverses around

r � r i;s =
p

2. It is however worth noting that the calculated second order axial mass ow is

not realistic near the stack/waveguide interface, becausethe stack pore or the waveguide are

both treated as isolated systems. In other words, there exists complicated hydrodynamical

edges e�ects due to the geometrical singularity at positionx = xs which impact both the

oscillating and the steady ows, but which are not taken intoaccount here. Recent LDV

measurements performed by Moreau et al. [34] indicate that the presence of a stack in the

waveguide induces new streaming vortices in the vicinity ofthe stack ends. This means that

heat transport by acoustic streaming in the vicinity of the stack should be very complex. In

that context, the authors easily admit that the derivation presented in the following, which

attempts to account for heat transport by acoustic streaming in the standing wave engine,

should be considered cautiously.

2. Simplistic account of acoustic streaming

a. Separation of inner and outer zones. As depicted in Fig. 6, the velocity of acoustic

streaming is multidimensional. Therefore, it seems arduous to account for the heat convected

by acoustic streaming in the one-dimensional model described in section III B, unless putting

up with a simplistic approach. In our attempt to include the e�ect of acoustic streaming, the

actual spatial distribution of the streaming velocity in the waveguide needs to be signi�cantly

simpli�ed, and a schematic drawing of the retained assumptions is presented in Fig. 7. In
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order to reproduce the vortex cell structure of acoustic streaming without considering the

details of its spatial distribution, we separate the waveguide cross-section between an inner

zone (r 2 [0; r i =
p

2]) where the streaming mass ow is directed leftwards, and an outer

zone (r 2 [r i =
p

2; r i ]) where it is directed rightwards [Fig. 7(b)]. The variations with axial

coordinate of the streaming velocity are also discarded: only the \characteristic" values at

positions z = � ls0 and z = lw0 are considered (this assumption is consistent with the one

used in the transition from Eqs. (12) to Eqs. (13)). Moreover, the transverse variations of _m

are ignored: the assumption of an uniform ow is retained in both inner and outer zones and

the corresponding mass ow rates are calculated from their cross-sectional averaged values

_m(i )
f = 2� 2�

�r 2
i

Rr i =
p

2
0 _m(lw0 ; r ):rdr and _m(o)

f = 2� 2�
�r 2

i

Rr i

r i =
p

2 _m(lw0 ; r ):rdr . The same assumptions

are also retained inside the stack pores of radiusr s : each pore is separated into an inner

zone where the streaming mass ow rate _m(i )
s is directed rightwards and an outer zone where

the streaming mass ow rate _m(o)
s is directed leftwards. Therefore, since the total mass ux

across the section of the waveguide equals zero, and since the surface area of the inner zone

equals that of the corresponding outer zone (�r 2
i;s =2 = � (r 2

i;s � r 2
i;s =2) ), the counterowing

mass ow rates have the same magnitude: _m(o)
f = � _m(i )

f = _mf and _m(i )
s = � _m(o)

s = _ms,

with

_mf =
2�
�r 2

i

Z r i

0
j _m(xs + lw0 ; r )j r dr = � (f )

str P2; (18a)

_ms =
2�
�r 2

s

Z r s

0
j _m(xs � ls0 ; r )j r dr = � (s)

str P2; (18b)

where _m(lw0 ; r ) and _m(ls0 ; r ) are the transverse distribution of the mass ow rate at positions

xs + lw0 and xs � ls0 calculated from the theoretical model of Bailliet et al.[32]. In Eqs. (18)

the quadratic dependance of _mf;s with P is obvious because it is calculated from the time

average of the products of �rst order (acoustic) quantities, and the parameters �(s)
str and

� (f )
str , which depend on the stack positionxs and on the temperature distribution, simply

correspond to the results of calculation for _mf and _ms when a peak amplitude of acoustic

pressureP = 1 P a is assigned at positionx = L. In the following, these parameters are

computed for various stack positions with their corresponding temperature distribution at

threshold. In particular, at position xs = 26:5cm, we get � (s)
str � 1:2 10� 8 kg3m� 4s� 5 and

� (f )
str � 4:4 10� 9 kg3m� 4s� 5, and at position xs = 36:5cm (with the correspondingQonset �

14:47W) we get � (s)
str � 5:6 10� 9 kg3m� 4s� 5 and � (f )

str � 2:5 10� 9 kg3m� 4s� 5.
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Another important point concerns the time delay for streaming establishment, which may

be important when investigating the dynamics of wave amplitude saturation. It is worth

noting that the estimate of streaming velocity mentioned above is valid in steady state,

while the stabilization of acoustic streaming after switching on the acoustic �eld is not

instantaneous. The rough estimate� = � f D 2=(� f � 2) of the characteristic time of streaming

establishment was given by Amari et al. [35], where� f is the dynamic viscosity of uid

and D is the diameter of the channel. Then one can evaluate the characteristic times � s;f of

streaming establishment in one stack pore and in the waveguide, respectively, which leads

to � s � 5 10� 3 s and � f � 17:9s. Clearly, the time delay for streaming establishment can be

neglected in the stack, but should be taken into account in the waveguide.

From the assumptions described above, it is �nally possibleto include acoustic streaming

in the equations describing unsteady heat transfer in the thermoacoustic core, Eqs. (9) ,

which leads to:

x � xs;
@T(i )

@t
�

_mf

� f

@T(i )

@x
= � f

@2T (i )

@x2
�

T (i )

� f
(19a)

x � xs;
@T(o)

@t
+

_mf

� f

@T(o)

@x
= � f

@2T (o)

@x2
�

T (o)

� f
(19b)

x � xs;
@T(i )

@t
+

� � f Cf

� sCs

_ms

� f

@T(i )

@x
=

�
� s + � � P2

� @2T (i )

@x2
�

T (i )

� s
(19c)

x � xs;
@T(o)

@t
�

� � f Cf

� sCs

_ms

� f

@T(o)

@x
=

�
� s + � � P2

� @2T (o)

@x2
�

T (o)

� s
(19d)

_ms = � (s)
str P2; (19e)

d _mf

dt
+

_mf

� f
=

� (f )
str P2

� f
(19f)

whereT (i )(x; t ) and T (o)(x; t ) refer to the temperature in the inner zone and the outer zone,

respectively, and where the parameter �� f Cf =(� sCs) in Eqs. (19c) and (19d) accounts for

the fact that the mass ow velocity in the stack is an e�ectivevelocity which results from

the only motion of the uid in the honeycombed ceramic of porosity � and volumetric heat

capacity � sCs. It should be emphasized, however, that besides their intrinsic limitations

associated to the one dimensional approximation in the description of heat transfer, Eqs.

(19) are also rigorously uncorrect for two reasons: �rstly,the thermal coupling between the

inner and outer zones is ignored, and secondly the description of heat transfer in the inner
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zones should not include the termT (i )=�s;f because there is no physical contact between the

uid and solid walls. So, Eqs. (19) are imperfect but at leastone can check that setting

� (s;f )
str = 0 yields Eqs. (9) which are valid in the absence of streaming.

b. Estimate of the heat taken by acoustic streaming at the stack/waveguide interface

The equations of unsteady heat transfer, Eqs. (19), must be completed by some boundary

condition at the stack/waveguide interface. To do this, Eq.(10) is modi�ed as follows:

�
� s + � � P2

�
@x Tjx �

s
� � f @xTjx+

s
+ h(f )

conv (TH � T1 ) + h(s)
conv (TH � T1 ) =

Q(t)
�r 2

i
; (20)

whereTH = T (o)(xs; t) = T (i )(xs; t) and @xTjx �
s

= 1
2

�
@xT (i ) jx �

s
+ @xT (i ) jx �

s

�
. In this equation,

the heat exchange coe�cientsh(s)
conv andh(f )

conv are representative of some heat taken away from

the electrical heat resistance, by acoustic streaming, towards the stack and the waveguide,

respectively. Calculatingh(s;f )
conv is actually a di�cult task which implies knowing the details

of both temperature and streaming velocity �elds in the vicinity of the stack/waveguide

interface, so that one have to estimate them very roughly. Todo this, we consider that the

actual problem, i.e. the presence of vortex streaming cellsin both stack and waveguide, is

equivalent to two independant problems where each cell is unwrapped. This is illustrated

by the two schematic drawings of Figs. 7 (c) and (d) in which one focuses on the streaming

cell in the waveguide region (x � xs): it is assumed that the uid going leftwards at velocity

_mf =� f , upwards and downwards along the stack interface, and rightwards away from the

stack at velocity _mf =� f , carries the same amount of heat than the uid which would go

rightwards in a single tube of in�nite length and which wouldcross an isothermal grid with

�xed temperature TH . In other words, the heat ux ' conv taken by convection from the

electrical heat resistance at temperatureTH , Fig. 7 (c), is assumed to be equal to the

heat ux taken by the uid in the more tractable situation of F ig.7 (d). The problem of

heat transport in that last situation is indeed quite easy tosolve: assuming �rst adiabatic

condition along the tube walls, and introducing the new space coordinatey de�ned in Fig.

7 (d), one can write the following steady-state heat transfer equation

_mf

� f

@T
@y

= � f
@2T
@y2

: (21)
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Then, assuming that the temperature of the ingoing owT(y = �1 ) equalsT1 , one gets

y � 0; T(y) = ( TH � T1 ) e( _m f y)=(� f � f ) + T1 ; (22a)

y � 0; T(y) = TH : (22b)

Therefore, one can report Eqs. (22a) and (22b) in the following boundary condition

� f
@T(0+ )

@y
� � f

@T(0� )
@y

+ ' conv = 0; (23)

where ' (f )
conv is the heat power provided by the grid to sustain the steady-state temperature

�eld of Eqs.(22). This leads to

' (f )
conv = Cf _mf (TH � T1 ) = h(f )

conv (TH � T1 ) : (24)

The same approach is used to estimate the heat uxh(s)
conv convected away from the electrical

heat resistance to the stack, which gives:

' (s)
conv = �C f _ms (TH � T1 ) = h(s)

conv (TH � T1 ) : (25)

These estimates ofh(s)
conv and h(f )

conv are �nally reported in the boundary condition at the

stack/waveguide interface, Eq. (20).

c. Summary. The complete problem of heat transfer in the presence of acoustic stream-

ing is now described by Eqs. (19) and (20). Therefore, following the approach of section

III B, one can transform these equations into ordinary di�erential equations: introducing

once again the space variablez = x � xs, we seek a solution to Eqs. (19) and (20) in the

form

z � 0; T (i;o )(z; t) � T1 + � T(t)ez=l( i;o )
s (t ) ; (26a)

z � 0; T (i;o )(z; t) � T1 + � T(t)e� z=l( i;o )
f (t ) : (26b)

wherel (i;o )
s;f (t) are the four characteristic lengths associated to both inner and outer zones in

the stack and in the waveguide. Finally, using the same approximations than those formu-

lated in section III B, and including the equation describing thermoacoustic ampli�cation,

Eq. (8), leads to the following set of equations:

19



l (i )
s

� T
d � T

dt
+

d l(i )s

dt
=

� s + � � P2

l (i )
s

�
l (i )
s

� s
�

� � f Cf

� sCs
� (s)

str P2; (27a)

l (o)
s

� T
d � T

dt
+

d l(o)
s

dt
=

� s + � � P2

l (o)
s

�
l (o)
s

� s
+

� � f Cf

� sCs
� (s)

str P2; (27b)

l (i )
f

� T
d � T

dt
+

d l(i )f

dt
=

� f

l (i )
f

�
l (i )
f

� f
� _mf ; (27c)

l (o)
f

� T
d � T

dt
+

d l(o)
f

dt
=

� f

l (o)
f

�
l (o)
f

� f
+ _mf ; (27d)

d _mf

dt
+

_mf

� f
=

� (f )
str P2

� f
; (27e)

"
1
2

�
� s + � � P2

�
�

1

l (i )
s

+
1

l (o)
s

�
+

� f

2

 
1

l (i )
f

+
1

l (o)
f

!

+ Cf _mf + � Cf � (s)
str P2

#

� T =
Q

�r 2
i
; (27f)

d P
dt

= � ampl P: (27g)

The last point concerns the calculation of the thermacoustic ampli�cation rate � ampl (together

with the frequency 
 of self-sustained oscillations) whichmust be estimated from a monodi-

mensional temperature �eld. In the following, this ampli�cation rate � ampl (t) = � ampl [T(z; t)]

is calculated from the average temperature �eldT = 1
2

�
T (i ) + T (o)

�
. The above set of equa-

tions (27), which reduces to Eqs. (17) in the absence of streaming (� (s;f )
str = 0), can be

transformed into a set of ordinary di�erential equations and solved numerically.

IV. THEORETICAL RESULTS

Before calculating the transient regime, the theoretical modeling of section III is �rst used

to compute the onset heat power supplyQonset in function of the stack positionxs. This is

done by settingP = 0 in Eqs. (17), and by adjusting the heat supplyQ(t) = Q0 to Qonset in

order that � ampl = 0. The resulting theoretical stability curve Qonset(xs) is presented in Fig.

3 (dashed line). The results show reasonable agreement between experiments and theory,

with unavoidable di�erences due to the approximations of the model.

Once the theoretical stability curve is determined, the protocol used to compute the tran-

sient regime is chosen in accordance with the experimental protocol. The initial heat supply

Q(t � 0) = Q0 is chosen slightly belowQonset , while the initial peak pressure amplitudeP
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is �xed arbitrarily to the small value P(t = 0) = 10 � 8P a. Then, at time t = 0, a power

increment � Q is applied and the governing set of ordinary di�erential equations, Eqs. (27),

is solved numerically using a variable time-step, fourth-order Runge-Kutta method.

In Fig. 8(a), we present the results obtained for the stack position xs = 26:5cm, where

the initial heat power supply Q0 is �xed to 18:6;W. The same results are presented in

Fig.8(b) for the stack positionxs = 36:5cm, where the initial heat power supplyQ0 is �xed

to 13:7;W. The results depicted in Fig. 8 show that the time of occurrence of the onset of

thermoacoustic instability is controlled by the power increment � Q, and that the amplitudes

of acoustic pressure in steady state are roughly of the same order of magnitude than those

observed in experiments. The models also predicts larger steady state acoustic pressures for

xs = 36:5cm than for xs = 26:5cm, which is consistent with the experimental results of Figs

4 and 5. However, when comparing in details the theoretical results with the experimental

results of Figs 4 and 5, it appears clearly that the model is unable to reproduce the actual

dynamics of wave amplitude evolution: there exists very small overshoots of wave amplitude

growth which are however much lower than those observed in experiments, and the switch

on/o� process is not predicted by theory.

In order to get a deeper physical insight about the engine's operation, it is useful to calcu-

late the transient regime when each of the saturating processes is considered independantly.

This is realized in Fig. 9(a) wherexs is �xed to 36:5cm and � Q=Q0 = 16% (Q0 = 13:7W).

For an adequate readability, the computed data are only presented from time t = 25 s to

t = 100 s. The gradual evolution of the characteristic temperaturesTH (t) = T(z = 0; t),

TS(t) = T(� ls0 ; t), and TF (t) = T(l f 0 ; t) are also presented in Fig. 9, withls0 � 1:52cm and

l f 0 � 1:36cm. The transient regime is computed in di�erent con�gurations depending on

whether both thermoacoustic streaming and acoustic streaming are considered (solid lines)

or not (� and � ). The impact of cancelling the time delay� f of streaming establishment is

also examined (� ). From the analysis of the evolution of acoustic pressureP(t), it �rstly

appears that the major contribution to wave saturation is due to the thermoacoustic heat

pumping (dashed lines,� ) which, however, cannot be considered as the only contributor to

wave saturation (otherwise dashed lines would coincide with solid lines). The only contri-

bution of acoustic streaming (dash-dotted lines,� ) leads to a steady state acoustic pressure

which is not signi�cantly larger than the one due to the only thermoacoustic pumping: this

means that, from our simpli�ed model, acoustic streaming contributes to wave saturation.
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Another interesting point concerning the only contribution of acoustic streaming to wave

saturation is that there exists a signi�cant overshoot of wave amplitude growth, clearly

visible around t � 35s. Moreover, the results show that if the characteristic time� f of

streaming establishment is discarded (� f = 0, � ), the overshoot disappears. From the anal-

ysis of the evolution of the temperaturesTH , TS and TF , it appears that the wave amplitude

growth is accompanied by a diminution ofTH leading to a diminution of the thermoacoustic

ampli�cation rate. However, it is di�cult to distinguish th e di�erent curves from the only

analysis ofTH while signi�cant di�erences clearly appear from the gradual evolutions of both

TS and TF . This clearly means that thermoacoustic ampli�cation is not only controlled by

the temperature di�erence across the stack but also by the shape of the temperature �eld

in the entire thermoacoustic core.

V. CONCLUSION

We presented an experimental and theoretical study dealingwith the onset of self-

sustained acoustic waves in a standing wave thermoacousticengine. The results clearly

show that even in the simple thermoacoustic device considered in this study, a rather simple

modeling is unable to reproduce the complicated dynamics ofwave amplitude evolution ob-

served in experiments. The model indicates that the major contribution to wave saturation

is due to thermoacoustic heat pumping by acoustic waves, butalso that forced convection

due to acoustic streaming should be worth considering. Though the complicated dynamics of

wave amplitude evolution are not completely reproduced by the model, it seems reasonable

to suggest that the e�ects observed in experiments could be due to the gradual evolution of

the temperature �eld along the thermoacoustic core. The results also indicate that acoustic

streaming impacts the temperature �eld within a time scale which is signi�cantly larger than

the time scale� � 1
ampl of thermoacoustic ampli�cation: this could explain the overshoot process

and, perhaps, the switch on/o� process. It is thus challenging to improve the theoretical

description of the device in order to get a better agreement with experiments. In our opinion

there are two major drawbacks in the simpli�ed model presented in this paper. The �rst one

concerns our rough estimate of the heat exchange coe�cientsh(s;f )
conv associated to the heat

taken by the uid near the stack/waveguide interface. The second drawback concerns the

rough simpli�cation of the equations describing unsteady heat transfer : by transforming
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these partial di�erential equations into ordinary di�erential equations, one may lose impor-

tant information linked to the details of the temperature distribution and its evolution with

time. It seems interesting for future works to give up the simpli�cation mentioned above,

and to solve the unsteady heat transfer equations using a �nite di�erence numerical scheme.

Finally, it would be interesting to include in the analysis the additional processes of wave

saturation (nonlinear propagation in the open-ended tube and minor losses at the edges of

the stack).
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FIG. 1. (a) Photograph of the experimental apparatus. (b) photograph of the hot side of the stack.
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FIG. 2. Schematic drawing of the standing wave thermoacoustic engine
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FIG. 3. Experimental ( � ) and theoretical (dashed line, see Sect. III) onset threshold heat supply

Qonset in function of stack position xs. Lower errorbars correspond to the increment of heat supply

used in experiments.
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FIG. 4. Gradual evolution of the measured acoustic pressurep(L,t), for di�erent values of the heat

increment � Q (supplied at time t = 0) above the initial heat supply Q0 = 16W (slightly below

Qonset = 16:9W ). The stack position is xs = 36:5cm. (a) � Q=Q0 = 16%, (b) � Q=Q0 = 34%,(c)

� Q=Q0 = 53%.
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FIG. 5. Gradual evolution of the measured acoustic pressurep(L,t), for di�erent values of the heat

increment � Q (supplied at time t = 0) above the initial heat supply Q0 = 18W (slightly below

Qonset = 19:6W ). The stack position is xs = 26:5cm. (a) � Q=Q0 = 16%, (b) � Q=Q0 = 24%,(c)

� Q=Q0 = 30%.
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FIG. 6. Spatial distribution of acoustic streaming at threshold in the stack (xs � ds � x � xs)

and in the waveguide (xs � x � L ), for xs = 26:5cm. The corresponding heat power supply

at threshold (� ampl � � 3 10� 3 s� 1) is Qonset = 20:17W , and the acoustic pressure amplitude at

position x = L is �xed to 1 Pa. (a) : spatial distribution of the second order mass ow _m in the

stack (the transverse coordinate� s is de�ned as � s = r=r s); (b) : spatial distribution of _m in the

waveguide (the transverse coordinate� f is de�ned as � f = r=r i ).
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FIG. 7. Schematic representation of the simplistic approach used to account for heat convection

by acoustic streaming. (a) : schematic representation of the streamlines associated to acoustic

streaming ; (b) : schematic representation of the streaming velocity �eld inside both stack and

waveguide ;(c) and (d) : the heat convected from the stack/waveguide interface is estimated by

unwrapping the vortex cells and by considering that the interface is equivalent to an isothermal

grid at constant temperature TH crossed by a steady ow.
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FIG. 8. Theoretical transient regimes of wave amplitude growth obtained for various heat power

increments � Q: (a) the position of the stack is �xed to xs = 26:5cm while the initial heat

power supply Q0 equals 18:6W (slightly below Qonset = 20:17W ); (b) the position of the stack

is �xed to xs = 36:5cm while the initial heat power supply Q0 equals 13:7W (slightly below

Qonset = 14:47W ).
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