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Summary

The aim of this paper is to study the influence of the shape of the temperature distribution on the thermoa-
coustic amplification in an annular thermoacoustic prime mover. An analytical model is presented and the
acoustic field in the whole device is computed for an arbitrary temperature distribution. The obtained results
demonstrate dependence of the thermoacoustic amplification not only on the maximum temperature difference
but also significantly on the details of the spatial temperature distribution, which influence the structure of the
acoustic field throughout the thermoacoustic core. These results provide the opportunity to predict qualitatively
the variation of the thermoacoustic amplification, when the temperature distribution is modified by acoustic
streaming or acoustically enhanced thermal conductivity. It may be of primary importance when trying to ex-
plain the complicated, experimentally observed dynamics of the transient process of acoustic wave amplification
and saturation.
PACS numbers: 43.35.Ud, 43.25.Nm, 43.25+y

1 Introduction

The basic elements of a thermoacoustic prime mover are a resonant acoustic tube (filled with a gas) and a
stack of solid plates subjected to a strong temperature gradient. When the temperature gradient along the stack
exceeds some critical value, the thermoacoustic interaction between the fluid and the stack results in the self
excitation of a high amplitude acoustic wave. Recently, thermoacoustic devices using a travelling wave phasing
have been investigated and have already demonstrated high efficiency [1, 2], compared to classical standing
wave devices. At the present time, there is a growing interest in improving the understanding and in optimizing
the efficiency of travelling wave thermoacoustic prime movers, in order to make use of them, for instance as
a mechanical source for cryocoolers. One of those devices, called the annular thermoacoustic prime mover,
involves placing the stack in a closed loop resonator (as illustrated in Fig. 1 (a)), thus allowing the generation
of travelling acoustic waves [3]. In such a device, the saturation of the thermoacoustic instability leading to
the stationary regime is linked not only to classical nonlinear phenomena such as the cascade process of higher
harmonic generation and minor losses, but also to nonlinear processes influencing the temperature distribution
in the inhomogeneously heated parts of the system such as acoustically enhanced thermal conductivity (equiva-
lent to heat transport induced by gas oscillations [4]) and the excitation of unidirectional acoustic streaming [5].
Such kinds of nonlinear interactions between the acoustic and temperature fields may firstly reduce the mean
temperature gradient across the stack (with subsequent saturation of the acoustic wave amplitude), but may
also change the shape of the temperature distribution, as illustrated in Figs. 1 (b),(¢). While various analytical
models describe classical nonlinear phenomena [6, 7, 8, 9, 10] and streaming generation [5, 11, 12], the influence
of temperature distribution profile in the inhomogeneously heated parts of the device on thermoacoustic am-
plification is less understood. In fact, to our knowledge, the existing models neither allow to describe precisely
the acoustically induced evolution of the temperature distribution during the transient regime of the prime
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mover operation, nor give an idea of the reverse influence of the temperature distribution on the structure of
the acoustic field and on the thermoacoustic amplification process. The existing analytical models frequently
consider a mean temperature gradient along the stack and do not allow for the temperature field to be other
than linear in co-ordinate, whereas for instance forced thermal convection (due to acoustic streaming) could
give to this temperature field a nonlinear shape (Fig. 1(b)). Now, various experimental observations indicate
that nonlinear effects influencing the temperature field probably play a major role [13, 14, 15]. Particularly, we
expect those nonlinear effects to be responsible for what we called the double-threshold phenomenon [15] and
other complicated dynamical behaviours observed under some heating conditions in the transient regime.

Figure 1: (a) Schematic representation of the annular thermoacoustic prime mover. (b) Qualitative repre-
sentation of the acoustically induced variations of the temperature distribution (dashed line) due to acoustic
streaming directed from left to right. (c) Qualitative representation of the acoustically induced variations of
the temperature distribution (dashed line) due to acoustically enhanced thermal conductivity.

A quantitative and exhaustive description of the thermoacoustic amplification process requires a numerical
resolution of the equations of motion [16], but many expensive diagnostics may be wasted trying to understand
the independent influence of each one of the nonlinear phenomena that control the saturation. We believe that
a complementary approach would be to find the simplest description that qualitatively captures the dynamics
which are typically observed in experiments. Obviously, thermoacoustic amplification and saturation processes
depend on numerous parameters, but if we succeed in determining the most relevant ones that provide qualitative
description, we will expect additional terms to have only quantitative effects. As pointed out before, the main
deficiency we must clear up before trying to compute the transient regime is the analysis of how and why the
shape of the spatial temperature distribution (i.e. linear or not) throughout the thermoacoustic core of an
annular thermoacoustic prime mover has an influence on the sound amplification process. This will be the topic
of the present paper.
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In section 2, an analytical model for an annular thermoacoustic prime mover is presented [17]. This model,
which is based on mathematical approach developed for standing wave devices [8], uses the scattering matrix
formalism to describe the acoustic field in this closed loop device. There are neither restrictions on the stack
length nor on the shape of the temperature field. Analytical expressions for the threshold condition and for the
corresponding oscillation frequency are provided, and calculated numerically. The acoustic field in the whole
device, and the total work flow are also calculated. In section 3, the role of the temperature distribution in the
stack and in the inhomogeneously heated part of the resonator is investigated, from the quasi-adiabatic regime
to the quasi-isothermal regime. The main result is that the temperature distribution in the resonator has a great
influence on the amplification process, mainly because it significantly modifies the acoustic pressure, velocity
and phase shift between them. Consequently, accounting for the effect of acoustic streaming and acoustically
induced thermal conductivity in a theory describing transient interaction of the acoustic and thermal fields in
the transient regime may allow to reproduce, at least qualitatively, the experimentally observed dynamics of
the prime mover operation.

2 Analytical model

The device is schematically presented in Fig. 1. It consists of an annular cylindrical waveguide (inner radius
Dy ) of length L, that can be divided into three parts, i.e. the stack (—Hg < z < 0), the inhomogeneously heated
part of the resonator (0 < z < Hy ), and the cold part (Hy < x < L — Hg). The interval —Hg < z < Hy
is called the thermoacoustic core. The stack is a porous material (longitudinal porosity = 0.81) with many
cylindrical channels of inner radius Dg . Notice that in the corresponding experimental device [13, 15] the
stack is made of many square channels, but the cylindrical geometry is chosen because computation times are
significantly shorter. No restriction is made on the stack length Hg and on the shape of the temperature
distribution in the thermoacoustic core. In our model [17], the coupling between the thermoacoustic core and
the rest of the resonator is described using the scattering matrix of the thermoacoustic core, for an arbitrary
temperature distribution profile T'(z).

2.1 Scattering matrix of the thermoacoustic core

therpoacoustic core

o
pm— (_HS) T+ ~
mol 2 BREEE R = | ot (Hw)
RY| T R
P(=Hs) ||~ i
Tl | P (Hw)
—-Hs 0 Hy

Figure 2: Reflected and transmitted waves at the edges of the thermoacoustic core

Acoustic variables are expressed in the frequency domain, w denoting the angular frequency. In the interval
Hy < xz < L — Hg with homogeneous temperature distribution, the acoustic pressure p(z,w) = p(z) can be
separated into its two counterpropagative components p(x) = 1 (x) + p~(x), where p+ and p~ represent the
complex amplitudes of the pressure waves which propagate respectively in the +z and —z directions (p(z,t) =
Re (p(z)e~™?)). In order to take into account the causality of incident, reflected and transmitted waves at the
edges of the thermoacoustic core, a discrete time scale is introduced using the subscript m corresponding to the
mt" passing of the wave through the thermoacoustic core. Consequently, as illustrated in Fig. 2, the acoustic
pressure at the m*" iteration can be expressed as a function of its value at the (m — 1)*" iteration and of the
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reflexion/transmission characteristics of the thermoacoustic core, using the scattering matrix as follows :

(2 ) - (T3 R (Pl ) o
P (—Hs) RT T P (Hw) )’
In equation (2), the coefficients 7+ and R* represent the transmission and reflexion coefficients of the ther-

moacoustic core. To compute these coefficients, it is necessary to solve the well-known differential equation of
thermoacoustics [18] (second order differential equation with variable coefficients)

Here, T'(z) is the mean temperature (i.e. the temperature averaged over a period of acoustic oscillations), w is
the angular frequency, a. is the speed of sound, f is the isobaric thermal expansion coefficient, v is the specific
heat ratio of fluid, and o is the Prandtl number. The frequency (and temperature) dependant functions f,
and f, characterize the efficiciency of the viscous and thermal coupling of the acoustic field with the walls of
the channel (stack channel, or waveguide). For the case of a circular cylinder channel of inner radius D, these
functions are

2 Ji(iYo k)
v,k — .7’, 3
2 1Yy Jo(iYy k) (3)
where
D
Y, e =1+ i)(s . 4)

0x = /2k(T(z))/w is the acoustic thermal boundary layer thickness in fluid and 4, = \/2v(T(z))/w is the

acoustic viscous boundary layer thickness in fluid (v and k denoting the temperature dependant kinematic
viscosity and thermal diffusivity of the fluid). The coefficient €, proportional to the ratio ef/eg of thermal
effusivities of fluid and solid, characterizes heat transport in the direction normal to the direction of acoustic
wave propagation. Assuming € << 1 (in fact, considering e = 0) and § = 1/T (i.e. considering that the fluid is
an ideal gas), equation (2) reduces to

dQﬁ 1 Jv — [« df, 1 dTy dp
Tt [1+ -~ ( — —TN(.Z')dTN>] T

w 2 1 1 1 . . 5

+(a_c) TN[ g - )fn)]p_ , .

where Ty (z) = T'(z)/Tc, with T denoting the cold temperature (i.e. the temperature at the cold end of
the stack). It has been demonstrated in an earlier paper dealing with standing wave prime movers [8] that
transformation of this equation into an equivalent Volterra integral equation of the second kind leads to an
exact solution in the form of an infinite iterative sequence of integral operators. Here, we take advantage of
this result, taking into account the specific boundary conditions linked to the annular geometry of the present
device. The following quantities

s L (fo i 4, \] 1 dIy
ol (o) ©
_ 1 1 1 1 7

bo= g |14 125 o+ =15 (")

are introduced, and a new spatial coordinate £ is defined:

dg (61(z0)— 61 ()
== T = 1 T 1 T ; 8
X = ®)
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where g is an arbitrary origin in the reference frame. Then, defining the function

F(¢) = ¢o(z(€))&; >, (9)
equation (5) reduces to

b +EF(p=0 (10)

ggz TR FED=0,

with k. = w/a.. The main advantage of this formulation is that the solution can be found using an iterative
method. For this purpose, equation (10) is modified into the equivalent form

o Cdp e

) =560 + [ e )
dﬁ _ dﬁ 2 ¢ 1\ = (¢! !
0= g~ [ e (12)

This set of equations is well-suited for a numerical resolution by the use of successive approximations. Indeed,
the N*" order solutions for p and d¢p on the left hand-side of equations (11) and (12) can be found by substituting
their values at the (N — 1)** order in the integral operators on the right hand-side of equations (11) and (12).
Introducing the integral operators 2; and Q9

3
fr— Q2 (f) =ik i F(&)f(&)de, (13)
3
fr—= O (f) =ik, . f(&)de, (14)
the exact solution for p and d¢p is finally obtained in the form of an infinite sequence of integral operators
( p(¢) ) _ ( Yool (200)" ZEI ()" ) ( p(éo) ) (15)
Z© kel Y000 (220)" 20 ()" 9B (gy) )
where for instance (Q291)" (&) means
(Q229:1)" B(&0) = Q2(Q1 (.- Q2(Q1(5(40)))))- (16)
~————
n times

Then, using the Navier-Stokes equation, the acoustic velocity #(z,r) is expressed as a function of acoustic
pressure, and integrating over a cross section, the mean axial velocity (#(z)), (where (), denotes the average
over a cross section) is expressed as

1 dpw)
with
_ pl@ac
Z(.’E)— 1_fy’ (18)

p(x) being the mean density along the thermoacoustic core. Combining equations (17) and (15) finally gives
the acoustic field in the thermoacoustic core as a function of its value at position zq:

plx) \ _ 2o (22)" Z(@)02 300 ()" (o)
( (@(@))s ) B ( Sl S o ()" ZERE L 70 (0,0,)" ) ( (@(0))r ) ' (19
Invoking equation (19) yields the transfer matrix of the thermoacoustic core:
p(Hw) '\ _ p(—Hs) \ _ p(—Hs)
(. ) =7 ( @Gy, ) =me<mw (@), ) 20)

where Ts is obtained using equation (19) with (zo,z) = (—Hg,0) for a channel radius D = Dg and Ty is
obtained using equation (19) with (zo,z) = (0, Hy) for a channel radius D = Dyy.
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Then, the linear propagation of an harmonic wave in the cold part of the resonator (Hw < z < L — Hg)
can be described by equation (5), taking into account that Ty = 1 (and taking D = Dy in equation (4)). The
resulting expressions for the counterpropagative components p+ and $~ of acoustic pressure waves in the cold
part of the resonator are :

ﬁi(x) :ﬁi(H' )ej:ikw(z—Hw)’ (21)

where the complex wavenumber
— 22
k’w kc 1— f” ( )

accounts for the thermal and viscous losses in the vicinity of the resonator walls. Using equations (21) and (17)
the mean acoustic velocity (#(x)), can be expressed as a function of the counterpropagative components p+ and
p— of acoustic pressure p = pT + p~ and finally, simple calculations allow us to transform the transfer matrix
(equation (20)) into the scattering matrix (equation (1)), and then the coefficient R* and 7+ are obtained.

2.2 Thermoacoustic amplification coefficient

Now, the method for determining the threshold conditions is laid out. To model the amplification/attenuation of
the wave through the thermoacoustic core, a thermoacoustic amplification coefficient « is introduced as follows:

Va € [0, L], prn () = Py (2)e” (23)

In this equation, the coefficient a describes the amplitude evolution of counterpropagative waves that travel
a closed loop in the system, passing through the thermoacoustic core and then in the waveguide at room
temperature Teo. The sign of a determines whether the acoustic wave is attenuated (@ < 0) or amplified
(o > 0) while a = 0 corresponds to the threshold condition or to the stationnary regime. Combining equations
(1), (21), and (23) gives:

(™ e (D) -(2), e

where Ly = L— Hg— Hy is the length of the waveguide at room temperature. The solution (p;}, (Hw ), p,,(Hw))
of equation (24) is nonzero if the matrix determinant is zero:

(ea—ikwLw _ 7—+) (ea—ikWLW - 7'—) —RTR~ =0. (25)

If the temperature distribution in the thermoacoustic core is fixed, a truncated approximate solution for 7+
and R* can be computed, and introduced in equation (25) to obtain the amplification coefficient o and the
corresponding angular frequency w. Here, we are interested in the most unstable acoustic mode, which is in most
cases the first travelling wave mode of the annular waveguide (f ~ a./L). The quantity A¢ = a—i(kw Lw —2m)
is introduced, where 27 is in fact the approximate value for kw Lw in the empty device (Ly = L). Substituting
A¢ in equation (25) results in a quadratic equation in e®?, which admits the solution

el — 7+ — (H) + \/<g)2 +RTR~. (26)

2 2
Finally, separating equation (26) into real and imaginary parts, the following set of equations is solved:

{ at =in |1 +T*(w*)| - Im (kw(w®)Lw)

2m = Arg (1 + T'*(w?)) + Re (kw (wF)Lw) ° (27)

If we were interested in the n" travelling wave mode of the device we would only replace 27 by 2n7 in equation
(27). As pointed out in equations (26) and (27) there are two possible solutions for & and w, but it is easy to
accept that the physically observable solution is the one which increases in the quickest way. Consequently, the
chosen solution (a,w) € {(a ,w ™), (at,w)} is that for which

a = Sup(at,a”). (28)
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2.3 Acoustic field in the whole device

Finally, the acoustic field in the whole device can be computed for some arbitrary temperature distribution,
once the corresponding amplification coefficient « and oscillation frequency w are known. Using equation (21),
the acoustic pressure in the cold part of the waveguide is firstly computed as follows:

Vo € [Hy, L - Hsl, j(z) = 5" (Hyw) [ =50) 1 R(Hy)e~tw (=] (29)

where the complex quantity R(Hw) = p— (Hw) /P (Hw) is obtained using equation (24):

R(Hw) = (30)

R—e ikwLw
Combining equations (29) and (17), the mean acoustic velocity (#(z)), is also computed. Then, to obtain the
acoustic field in the thermoacoustic core, equation (19) is used. This equation is valid both in the stack region
and in the inhomogeneously heated part of the resonator, but each region has to be treated separately, because
Z(x), & (x), 1 and € depend notably on the f, , functions which characterize the transverse distribution of
oscillating velocity and oscillating entropy in the channel, and which are consequently not the same depending
on whether the channel radius D is Dg or Dy . So, setting the boundary values p(L — Hg) and (6(L — Hg)),
in the right-hand side of equation (19) (i.e. setting zg to L — Hg), the acoustic field is first computed in the
[-Hg,0] interval. Then, setting the boundary values p(L) and (9(L)), in the right-hand side of equation (19)
(with account of D = Dy ), the acoustic field is finally computed in the [L, L + Hw] = [0, Hw] interval.

Note that in equation (29), the clockwise pressure wave amplitude p™(Hy ), and consequently the amplitudes
of acoustic waves are unknown. In fact, to determine the amplitude of the pressure wave at any time in
the device, it is necessary to solve the transient problem from the onset of the thermoacoustic instability to
the stabilization of the wave amplitude (due to nonlinear processes). Nevertheless, by setting 57 (Hw ) to an
arbitrary value in equation (29), we are able to find the structure of the acoustic field in the whole device, for
a given temperature distribution profile T'(x). Thus, for all the results presented in the following, 5 (Hw ) will
be set in order to have an input intensity I(Hw) of 1W, with I = (1/2)Re(p{9*),) (* denoting the complex
conjugate), the main object being to understand how and why the amplification coefficient a depends on the
details of the temperature distribution T'(z).

3 Results

Thermoacoustic energy conversion is known to be controlled notably by the nature of the interaction between
the acoustic waves and the solid surfaces. This interaction is characterized by the thicknesses of the viscous and
thermal boundary layers 8, and d,, relative to the channel diameter 2D g, where §, = \/2v/w and 6, = v/26/w (v
and k denoting the dynamic viscosity and thermal diffusivity of fluid, respectively) depend on the temperature
T(x) since v o« k oc TP+ (with 8 = 0.73 [19]). In our theoretical model, all the geometric properties (stack
length, resonator length) and physical properties (stack material, fluid) are adjustable. Here, we will focus
only on the role of the temperature distribution when the regime of the acoustic and thermal waves interaction
inside the stack varies from the quasi adiabatic (QA) regime (dx,,/Dgs << 1) to the quasi isothermal (QI) regime
((8.,,/Ds)* >> 1). Thus, the only parameter variations that will be considered here are firstly the temperature
distribution T'(x), and secondly the thermal conductivity of the fluid at room temperature K (T¢). In fact, the
variations of the viscous properties of the fluid are also considered accordingly with K (T¢) variations, because
the Prandtl number will be fixed to its value for air (o = v/k = 0.7). For the remainder of the paper, all the
other parameters will be kept constant (except stack length Hg in Fig. 14-15). Their values correspond to those
of our experimental apparatus [13, 15] as indicated in Table 1.

3.1 Transition from the QA regime to the QI regime in the case of the linear
temperature distribution

The acoustic field in the whole device is presented in . 3 for the case of linear temperature distribution profile
at threshold condition (o = 0) when the device is filled with air at atmospheric pressure (8,,/Dgs = 0.46). The
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Physical properties
volumetric heat thermal
mass capacity | conductivity
kg/m3 J/kg/K W/m/|K
stainless
steel 7900 460 14
stack
(cordierite) 2500 900 2.5
fluid
(air) 1.2 1003 variable
Geometrical properties
L 2.24m
Dy 26.5mm
stack porosity 0.81
Dg 0.45mm
Hg 0.15m

Table 1: Geometrical and physical properties of the model

observed discontinuities for the acoustic velocity at the edges of the stack are simply due to the flow conservation
(with a stack porosity of 0.81). Notice that the acoustic intensity (fig. 3 (d)) produced in the stack exactly
compensates for the thermal and viscous losses in the other part of the resonator.

2

<
X (a)
o 151
g
3
= 1
15 T T
g | ®) |
x
a o5
0 ; i
— 3
v,
£
= (]
> 1
= ;
1.05
= 1 (d)
=
= 0.95f
0.9
Hw-L -Hs 0 Hw

position along the device

Figure 3: Distribution of the acoustic pressure |p(z)| (b), acoustic velocity |#(z)| (c), and acoustic intensity
I = (1/2)Re(pv*) (d) in the whole device, at threshold for the case of the linear temperature distribution profile

(a).

Now, the threshold conditions are analyzed when d,, ,, varies (Dg remaining constant) from the quasi adiabatic
regime to the quasi isothermal regime. Fig. 4 presents the evolution of both hot to cold temperature ratio
Tu/Tc = T(x = 0)/T(z = —Hg) and frequency f = w/27 at threshold as a function of d,/Dg. The results
obtained match earlier experimental results obtained by Yazaki [1]. In particular, they show the existence of
a minimum in the threshold temperature ratio at §,/Dg = 0.5 (i.e. between QA and QI regime). A drastic
increase in Ty /T¢ is also observable when 6, /Dg tends to 1 (QI regime). The threshold frequency f does not
change significantly: its order of magnitude remains f = a./L, with small variations predominantly due to
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temperature dependence of sound velocity a. in the thermoacoustic core (and perhaps also due to changes in
the sound reflexion at the edges of the stack).
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Figure 4: Evolution of the T /T ratio and frequency f at threshold, versus d,/Dg.

In Fig. 4, two particular points (referred as 1 and 2) are marked on the threshold curve. For these two points,
the threshold condition occurs for the same Tw/T¢, but for different values of d,,/Ds. Fig. 5 presents the
acoustic field in the whole device for these two particular points. Although the threshold conditions are the
same, it appears clearly that the acoustic pressure |j|, acoustic velocity |3|, and phase shift &,, between p and
0 are not distributed in the same way in these two particular cases. More particularly, when 6, ,,/Dg varies, the
pressure and velocity minima/maxima are shifted, and the phase shift also varies. Moreover, the distribution
of the acoustic intensity I shows that thermal and viscous losses in the resonator are higher for é,/Dg = 0.7
(QI regime) than for 6,/Dg = 0.1 (QA regime).

Ipl (kPa)

[v] (ms™)

1(W)

position along the device

Figure 5: Distribution of the acoustic pressure |p(z)| , acoustic velocity |¥(x)| , phase shift ®,, and acoustic
intensity I = 1/2Re(p*) in the whole device, at threshold for the case of the linear temperature distribution
profile. Solid line : §,,/Dg = 0.1, dashed line : §,,/Dg = 0.73.

For a better understanding, these results are analyzed in terms of energy conversion. According to Tominaga
[20, equations (105)-(108)], the energy conversion per unit volume due to the thermoacoustic interaction in a
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single pore of given geometry is written as the sum of four terms, in the frequency domain for an ideal gas:

w = wg +w, + wsw + wrw, (31)
where
1v-1 B
we = 57 Im(Fs S |l (32)
and
1 Im(fy) -\ 2
wy, = —wp———= (v 33
For | (33)

are negative quantities which express viscous and thermal losses in the vicinity of the channel walls, respectively.

1d,T S .
wsw = =5 =5 Im(Fsh) [p] [(9)] sin(@p,) (34)
and
1d,T .
wrw = 5~ Re(Fsh) Bl [(7)] cos(®0), (35)

proportional to sin ¢p, and cos ¢p,, represent the standing and travelling wave components of the energy con-
version respectively (for a pure travelling wave, ®,, = 0 = wsw = 0). Here, the functions f, , are given by
equations (3)-(4) with D = Dg in equation (4), and the terms Fs and h are expressed as a function of f, and
fv as follows:

1
FS=1+efN’ (36)
_ fn_fu
"S-y 0

where e = C¢ /C, is the ratio of heat capacity of the fluid to that of the solid wall. Finally, the energy conversion
terms due to the thermoacoustic interaction in a single cylindrical pore of inner radius Dg and length Hg are
derived as follows:

0

Wi Tw,sw = WD%/ Wi v, Tw,sw (T)dz. (38)
_Hg

The total energy conversion in the stack Wioe = ne.(Wy + W, + Wrw + Wew ) (where ne denotes the total
number of stack channels) is actually linked to the amplification coefficient a. Indeed, when Wy, is equal to
the thermal and viscous losses outside the stack, a necessarily vanishes.

In Fig.6, the energy conversion terms are plotted as a function of §,/Dg in transition from the QA regime
to the QI regime at threshold conditions. Firstly, the total energy conversion in the stack channel W =
W + W, + Wrw + Wgew increases when the regime changes from QA to QI. This can be explained by the fact
that when J,,, increases, the thermal and viscous losses in the resonator also increase, and consequently, the
total energy conversion in the stack must also increase in order to satisfy the threshold condition. Secondly,
each of the W, ., rw,sw terms varies significantly with d, ,/Dg. In the QA regime, the most important part of
the produced work is Wgw . In the QI regime, Wrw predominates while losses in the stack are primarily due
to viscous effects.
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Figure 6: Energy conversion in one stack channel versus d,,/Dg at threshold condition (a = 0). (a) Total energy
conversion. (b) Standing wave component Wsy (dashed line) and travelling wave component Wy (solid line)
of the produced energy. (c) Viscous component W, (dashed line) and thermal component W, (solid line) of the
losses.

3.2 The role of the temperature distribution in the thermoacoustic core

T(H,/2)

T(-Hs/2)

| |
—Hs —Hs/2 0 Hw/2 Hw

Figure 7: Some temperature distribution profile in the thermoacoustic core. The choice of T(Hw /2) and
T(—Hg/2) allows us to describe various physically realistic temperature distributions using a cubic spline data
interpolation.

This section aims at analyzing the effect of the temperature distribution profile when the temperature ratio
Ty /Tc and the parameter 0, ,/Dg are fixed. First of all, the thermal and viscous boundary layers 6, , are
set in order to satisfy the condition d,/Ds = 0.46 at room temperature (with a fixed Prandtl number o =
v/k = 0.7) . This value corresponds to the experimental conditions of our device [13, 15] when it is filled
with air at atmospheric pressure. Then, the hot and cold temperatures Ty and T¢ are fixed to satisfy the
threshold condition (o = 0) for the case of the linear temperature distribution profile. In order to describe
different examples of temperature profile in the stack and in the inhomogeneously heated part of the resonator



12 G. Penelet et al., accepted for publication in Acustica Acta Acustica

(—Hs <z <0 and 0 < z < Hy domains), the temperatures T(x = —Hg/2) and T'(z = Hw/2) are set
to several chosen values (control parameters, see Fig. 7). By fixing T, T¢, and the two control parameters
T(—Hg/2) and T(Hyw /2), the temperature distribution throughout the thermoacoustic core is then calculated
using a cubic spline data interpolation. The normalized temperature T, at a given position z is also defined
as follows:

T(z) —Tc

Tnorm(x) = Ty —To .

(39)
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Figure 8: Contour plot of the amplification coefficient a versus T, orm(Hw /2) and Ty orm(—Hs/2), with Hg =
0.15m and Hy = 0.4m

In Fig. 8, the evolution of the amplification coefficient « is plotted versus Thorm(—Hs/2) and Tyorm (Hw /2),
when Hg and Hy are set respectively to 0.15 m and 0.4 m. The magnitude of the variations of a (which are
due only to the temperature distribution profile modification for a fixed Ty /T¢) are £1072. Such variations
are significant, because an estimate shows that the amplification of @ = 10~2 corresponds to an increase in |p|
of about 450% within 1 second. Furthermore, from Fig. 8, it follows that the amplification depends not only on
the temperature distribution in the stack region (Tporm(—Hs/2) parameter) but also closely on the parameter
Tnorm(Hw /2) controlling the temperature distribution profile in the ”passive” region 0 < z < Hy .

In our opinion, the results illustrated in Fig. 8 are of primary importance. We suspect these results to be a
key to the interpretation of many experimental observations. Particularly, in a previous experimental study of
the transient regime [15], we found that the onset of the thermoacoustic instability could give rise to what we
called the double threshold effect. During this transient operation, the initial exponential growth of oscillations
(first threshold) is followed by a quasi-stabilization (with wave amplitude slowly growing in time), which before
the final stabilization is followed by another exponential growth (second threshold), without significant changes
of the ratio Ty /T¢. Asillustrated in Fig. 8, various temperature distributions with the same T /T correspond
to the threshold condition (a = 0). Two particular points, referred to as 3 and 4, are marked on the threshold
curve in Fig. 8. The corresponding temperature distributions for these two particular points are plotted in
Fig. 9. The first, referred to as 3 in Fig. 8, corresponds to the linear temperature distribution profile. The
shape of the second temperature profile in Fig. 9 (corresponding to point 4 on the threshold curve in Fig. 8)
suggests the existence of a nonzero directional mass flow (in the +z direction). Such a temperature distribution
profile is physically realistic since it could be induced by the directional acoustic streaming [5, 11, 13]. For
example, temperature distributions displayed in Fig. 9 could be respectively the initial and final states of the
temperature field in the transient regime of the prime mover operation. Since the development of the acoustically
induced variations of the temperature distribution profile might proceed with a different time scale than the
characteristic time of wave amplification, the system, in the process of its transient evolution, may well cross
the threshold curve in Fig. 8 (between the initial and final state) one or many times. In particular, we suspect
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the observed double threshold phenomenon [15] to be a consequence of the streaming induced evolution of the
temperature distribution in the transient regime of the prime mover operation, which causes the system to cross
the threshold curve once between the points 3 and 4. More generally, the results illustrated in Fig. 8 suggest
that the temperature distribution variations (induced by acoustic streaming or acoustically induced thermal
conductivity) throughout the whole thermoacoustic core are a source of multistability for our device, even for
a fixed Ty /T¢ ratio.

. . .
—Hs —Hs/2 0 Hw/2 Hw

Figure 9: Corresponding temperature distributions for points 3 (solid line) and 4 (dashed line) in Fig. 8.

At this stage, we still have no formal explanation concerning the physical reasons of the observed influence of
the temperature profile on the thermoacoustic amplification. Therefore, the roles of the stack and of the inhomo-
geneously heated part of the resonator will be investigated separately. In Fig. 10, the evolution of the acoustic
field represented by |p|, |0], and &,, is plotted for different temperature distributions in the inhomogeneously
heated part of the resonator. As Tporm(Hw /2) increases, the values for |p|, |0, and ®,, in the stack change
significantly. Consequently, as shown in Fig. 11, the energy conversion terms (equations (32-35)) vary. Here,
notice that when Toprm (Hw /2) varies, the predominant parameters responsible for the W, , rw,sw variations
are |p|, |0|, and ®,,. Indeed, since the temperature field remains constant in the stack, the functions f,, and f,
(and consequently Fs and h) only depend on the oscillation frequency f = w/2m, which in fact does not vary
significantly with Trm (Hw /2). As a consequence, the energy conversion terms can be written as follows:

W, o« [ |p|?dz,

W, « [ |o]%dz,
Wsw « [ |p||0]|sin®p,dz,
Wrw o [ |p||0|cos®p,de.

(40)

From the results presented in Fig. 11, it follows that the evolution of || and |9| in the stack region results in
significant variations of W, and W,,, while the produced acoustic energy Wry + Wy remains almost constant.
Consequently, the global increase of the total energy conversion W (and consequently of a) as Typorm(Hw /2)
grows is mostly due to a global decrease of |W,, + W,|.
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position along the thermoacoustic core

Figure 10: Distribution of the acoustic field in the thermoacoustic core for various temperature distributions
in the region 0 < z < Hw. Solid line: (Thorm(Hw/2) = 1/2), a = 0; dotted line: Thorm(Hw/2) = 1/4,
a = —1.1107%; dashed line: Tyorm(Hw/2) = 3/4, a = 4.71073.
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Figure 11: Energy conversion in one stack channel versus Tyorm(Hw /2). (a) Total energy conversion. (b)
Standing wave component Wgy (dashed line) and travelling wave component Wry, (solid line) of the produced
energy. (c¢) Viscous component W, (dashed line) and thermal component W, (solid line) of the losses.

In Figs. 12 and 13, the effect of the temperature distribution in the stack is analyzed. Similar to the case when
Trorm (Hw [2) varies, the Ty orm (—Hg/2) variations result in changes in the acoustic field distribution (Fig. 12).
The corresponding evolution of the energy conversion terms is plotted in Fig. 13. The simultaneous analysis of
Figs. 12 and 13 suggests that variations in the thermoacoustic amplification are mostly due to variations of |p|
and @, in the stack (and as a consequence, of W, Wrw, and Wgy ). Nevertheless, the relationship between
energy conversion and acoustic variables is more complex than in equation (40) when the temperature profile
in the stack changes. For instance, the influence of the changes in f,, and f, due to temperature dependence of
t and v should be taken into account.
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Figure 12: Distribution of the acoustic field in the thermoacoustic core for various temperature distributions in
the stack region. Solid line: (Tyopm (Hw /2) = 1/2), a = 0; dotted line: Tyopm(—Hs/2) = 1/4, a = —61073;
dashed line: T}, (—Hg/2) = 3/4, a =71073.
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Figure 13: Energy conversion in one stack channel versus Tporm(—Hgs/2). (a) Total energy conversion. (b)
Standing wave component Wgy (dashed line) and travelling wave component Wry, (solid line) of the produced
energy. (¢) Viscous component W, (dashed line) and thermal component W, (solid line) of the losses.

At this stage of the paper, it must be remembered that Hg and Hy were chosen in accordance with our
experimental device. In Figs. 14 and 15, the effect of the temperature distribution profile is analyzed when
the stack length Hg is shortened to 0.05m. In this particular case, as illustrated in Fig. 14, the effect of
the temperature distribution in the stack does not result in significant changes of the acoustic field while it
is not the case when Ty,orm(Hw /2) varies. In the same way, as illustrated in Fig. 15, the variations of a are
clearly more sensitive to the temperature distribution in the region 0 < z < Hy than to the one in the stack.
Consequently, the influence of the temperature distribution on the thermoacoustic amplification process in an
annular thermoacoustic prime mover is mostly due to the influence of the temperature field on the structure
of the acoustic field. In particular, the passive temperature distribution in the region 0 < z < Hy acts
basically as a mixer of counterpropagating acoustic waves. Both amplitudes and phases of the waves reflected
(or transmitted) through this layer depend not only on T /T but also strongly on the T'(z) profile.
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Figure 14: Distribution of the acoustic field in the thermoacoustic core for various temperature distributions ,
with Hg = 0.05m and Hy = 0.4m.
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Figure 15: Contour plot of the amplification coefficient a versus Tporm(Hw /2) and Tporm (—Hs/2), with Hg =
0.05m and Hy = 0.4m

4 Conclusion

In this paper, an analytical model is presented, allowing the computation of the acoustic field in an annular
thermoacoustic prime mover, for any temperature field in the thermoacoustic core, without restriction on the
stack length. The influence of the temperature distribution profile (i.e. linear or not) is investigated. An
important result is that the temperature distribution throughout the whole thermoacoustic core (including the
inhomogeneously heated part of the resonator) has an important effect on the thermoacoustic amplification. It
is demonstrated that changing the temperature field results in variations of the acoustic variables |p|,|?|, and
®,, in the stack region, and consequently in variation of the produced acoustic work. It may be of primary
importance when studying the transient regime of the prime mover operation. Indeed, the heat transfer due to
acoustically enhanced thermal conductivity and acoustic streaming may change the shape of the temperature
field (and also diminish the Ty /T ratio) during the process of wave amplification. Those acoustically in-
duced variations of the temperature distribution may proceed with a different time scale than the characteristic
time of wave amplification, giving rise to complicated dynamical behaviours. Particularly, we suspect that the
streaming induced evolution of the temperature field in the transient regime may explain the earlier observed
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double-threshold phenomenon. A numerical investigation of the transient regime is now in progress, where the
heat transfer equation is coupled to the acoustic problem by taking into account the forced convection due to
acoustic streaming and the acoustically induced thermal conductivity. The objective of the investigation is to
qualitatively reproduce the experimental results, in order to relate the parameters controlling transient interac-
tions between acoustic and temperature fields to the measurable parameters of the experimental thermoacoustic
devices.
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