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We propose a mechanical graphene analog which is made of stainless steel beads placed in a periodic magnetic
field by a proper design. A stable, free of mechanical borders granular structure with well-predicted wave
dynamics is experimentally constructed. First, we report the dispersion relation in conjunction with the evidence
of the Dirac points. Theoretical analysis shows that, compared to genuine or other artificial graphene analogs,
edge modes exist in the free zigzag and armchair boundaries together with bulk modes composed of in-plane
extended translations but localized rotations at the edges. We observe the existence of edge modes in free zigzag
boundary, and we reveal an experimental turning effect of edge waves from the zigzag to the armchair/zigzag
boundary, even in the absence of a full band gap for bulk modes. Our work shows that granular graphene can
serve as an excellent experimental platform to study Dirac, topological, and nonlinear wave phenomena.

DOI: 10.1103/PhysRevB.99.184113

I. INTRODUCTION

Graphene, a single layer of carbon atoms in honeycomb
lattice, has recently emerged as an appealing system for
conducting fundamental studies in condensed matter physics
and, in particular, Dirac physics phenomena [1–4]. Despite
the enormous progress, there are still great difficulties in
designing/modifying graphene at will at the nanoscale. This
leads many researchers to propose and study other artifi-
cial microscopic and even macroscopic graphene analogs for
further fundamental studies. These settings include the use
of molecules [5], ultracold atoms [6], photons [7–10], or
phonons [11,12] in honeycomb lattice.

The study of edge wave in finite crystals has been a
long-studied topic in condensed matter physics [13,14]. In
genuine graphene, zero-energy electronic states are predicted
in nanoribbons with zigzag/bearded boundaries [15,16]
and confirmed by means of scanning-tunneling microscopy
[17,18]. However, armchair boundaries do not support elec-
tronic edge states unless defects appear on the edges [17] or
the system is anisotropic [19]. The interest on edge states has
been significantly renewed by recent advances in the study
of topological physics. It has been shown that robust edge
states/modes can appear in topological insulators [20–22]
and higher-order [23] topological insulators. In these systems,
the existence of edge states is directly connected with the
topological properties of bulk bands. This is also the case for
the electronic edge states of graphene since they are related to
the winding number of bulk eigenmodes [24–26].

In addition to genuine graphene, an extensive body of
works has been published over the last few years, studying
edge waves in different artificial graphene structures, par-
ticularly in photonics. A number of edge modes have been
observed experimentally, such as conventional flat bands as
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well as unconventional edge branches in zigzag and beared
boundaries [27–29]. Regarding armchair boundaries, the pre-
vious reports of armchair edge waves are either in anisotropic
microwave artificial graphene [30], or in a photonic graphene-
like structure of coupled micropillars [31], where the exis-
tence of edge states is due to the coupling of px,y photonic
orbitals. Considering the study of vibrational edge waves, the
existence of edge modes has been predicted in genuine [32]
and granular graphene [33]. Moreover, it has also been shown
that in mechanical graphene analogs both flat and dispersive
unconventional edge modes can be found at zigzag edges
under fixed boundary conditions [34,35]. However, to the best
of our knowledge, there is no experimental observation of
edge waves in mechanical graphene until now.

In this work, we propose another type of artificial
graphene, that is, granular graphene, which can be thought
of as a mechanical analog of graphene whose carbon atoms
are replaced by macroscopic elastic beads and chemical bonds
are substituted by contact interactions via various stiffnesses.
Compared to genuine graphene or other mechanical graphene
structures, granular graphene possesses extra physical fea-
tures that make it very appealing from a fundamental point
of view. One of those is the existence of multiple degrees
of freedom (translations and rotations) [36–39]. This, in
combination with the honeycomb lattice geometry, leads to
Dirac cones in the dispersion relation [40,41] and topological
helical edge waves [42]. From an experimental standpoint,
previous reports on two-dimensional (2D) granular crystals
usually focus on closely packed hexagonal or square lattices
with mechanical constraints located on the borders [43–45].
Thus far, however, no direct observation has been made on
Dirac cones or edge wave propagation on granular graphene.
The obstacles blocking further experimental investigations on
granular systems include difficulties in constructing different
structures and stability issues, particularly for looser packings
like the honeycomb structure.

In this paper, we present how such structural difficul-
ties have been overcome using external periodic magnetic
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fields. The proposed magnetogranular graphene (MGG) is
structurally stable and acts as a nearly free-standing granular
structure. We then experimentally show the dispersion curves,
evidence of the Dirac point, and direct observations of the
edge wave propagation in the MGG. We theoretically show
that in the MGG, edge waves can exist not only on free
zigzag, but also on free armchair boundaries. More impor-
tantly, for a range of frequencies we show the existence of
bulk modes where translations are extended in the bulk of
the structure while rotations are localized at the edges. In the
same frequency range, when translations are also constrained
at the edges, i.e., in partial band gaps of the bulk modes, edge
modes can also appear on the free zigzag or both the free
zigzag and armchair edges. This leads to an interesting turning
effect of edge waves from zigzag to armchair boundary in the
frequency range where edge modes appear on both free zigzag
and armchair edges. Aside from the topological wave mech-
anism, where edge transport occurs in the full gap for bulk
wave and is protected by the bulk topology [46], the turning
effect demonstrated here originates from the coexistence of
wave solutions on the zigzag and armchair edges over a certain
frequency range.

II. EXPERIMENTAL SETUP AND MODELING

The MGG is depicted in Fig. 1(b), where 820 stainless steel
beads (diameter d = 7.95 mm, density ρ = 7678 kg/m3,
Young’s modulus E = 190 GPa, and Poisson’s ratio ν = 0.3)
are precisely placed in a honeycomb lattice, in contact with
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FIG. 1. Presentation of the magnetogranular graphene (MGG).
(a) Cut-view schematics of the MGG where the magnetic field
created by the permanent magnets induces attractive forces between
the particles. (b) Top view of the realistic MGG, composed of 820
beads. (c) Experimental setup for detecting wave propagation in the
MGG. (d) Closeup schematic of the MGG. The blue box highlights
a unit cell at position (m,n) containing the two sublattice particles,
labeled A and B. (e) Considered interactions between beads in the
MGG.

one another. This layout stems from a properly designed
external magnetic field that is induced by permanent cylin-
drical NdFeB magnets (remanent magnetization 1.37 T, di-
ameter 6 mm, and length 13 mm) placed in a honeycomb
configuration within the wood matrix [Fig. 1(a)]. The external
periodic magnetic field magnetizes the elastic beads, resulting
in equivalent precompression forces between beads and thus a
mechanically stable structure. Between the elastic beads and
the substrate, a thin layer of rubber (thickness 2 mm) has
been set to minimize the mechanical coupling of the granular
graphene with the substrate, and to damp the transmission of
elastic waves into the wood matrix.

The experimental setup is shown in Fig. 1(c). In-plane
motion is excited by the driver connected to a piezoelectric
transducer (Panametrics V3052). Thus, each bead in the
structure exhibits one out-of-plane rotation ϕ around the z
axis and two in-plane translations u and v along the x and y
axes, respectively. The u and v components of each bead can
be monitored separately by two laser vibrometers, which are
sensitive to changes in the optical path length along the beam
direction.

Regarding the mechanical contact interactions between
adjacent beads, we consider normal, shear, and bending inter-
actions, as characterized by the contact rigidities ξn, ξs, and
ξb, respectively [Fig. 1(e)]. Once precompression has been
determined (around ∼1.55 N by means of measurement), ξn,
ξs, and ξb can be obtained from Hertzian contact mechanics
[47,48] (see Appendix A). For the three types of interactions
between adjacent beads, i.e., Fig. 1(e), the elongations corre-
sponding to the effective normal nβ , shear sβ , and bending bβ

contact springs can be expressed as

nβ = (uβ − uα )exeβ + (vβ − vα )eyeβ, (1a)

sβ = (uβ − uα )exlβ + (vβ − vα )eylβ − d
2

(ϕβ + ϕα ), (1b)

bβ = d
2

(ϕβ − ϕα ), (1c)

where α = A, B is the sublattice index. Considering the hon-
eycomb structure, each sublattice bead is in contact with three
other beads as denoted by a neighboring index β = 1, 2, 3. We
define eβ as unit vectors in the directions from the center of α
bead to the center of its βth neighbors. ex, ey, and ez represent
the unit vectors along x, y, and z axes, respectively. lβ are
unit vectors normal to eβ and ez with the form lβ = ez × eβ .
As displayed in Fig. 1(d), we can label the sublattice α in a
normalized coordinate (m, n) (with the bead center positions
serving as the coordinate) by αm,n, where m, n are both
integers representing the normalized center positions of beads
in the x and y axes, respectively. On site (m, n), the equations
of motion can be expressed as follows:

Müα,m,n =
∑

β

(ξnnβexeβ + ξssβexlβ ), (2a)

Mv̈α,m,n =
∑

β

(ξnnβeyeβ + ξssβeylβ ), (2b)

Iϕ̈α,m,n = d
2

∑

β

(ξssβ + ξbbβ ). (2c)
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FIG. 2. Dispersion relations of the MGG and evidence of Dirac point. (a), (b) Theoretical (infinite MGG), (c), (d) numerical (finite MGG),
(e), (f) experimental dispersion relations. Panels (a), (c), and (e) show the dispersion curves of the u component, while the v component curves
are presented in (b), (d), and (f). (g) Isofrequency contours of Dirac point: (top) Dirac point at ω+ = 22.585 kHz obtained from numerical
simulation and (bottom) the measured Dirac point at the frequency ω+ = 21.731 kHz. The color bar represents the level of normalized
amplitude of the 2D Fourier transform.

Above, M is the mass of a bead and I is its moment of inertia.
The dots on the top represent derivation over time. It can be
seen from Eqs. (2) that bending interactions can not lead to the
displacement of beads, i.e., Eqs. (2a) and (2b), while normal
interactions do not contribute to the rotation of beads, i.e.,
Eq. (2c). Based on the equations of motion in Eqs. (2), wave
dynamics in the MGG can be described by

Ü
A
m,n = S0UA

m,n + S1UB
m,n + S2UB

m−1,n+1 + S3UB
m−1,n−1,

(3a)

Ü
B
m,n = D0UB

m,n + D1UA
m,n + D2UA

m+1,n+1 + D3UA
m+1,n−1,

(3b)

where Uα
m,n = [uα; vα; (α]m,n with ( = ϕd/2 are the motion

of particle α in the normalized coordinates. Si and Di (i =
0, 1, 2, 3) are 3 × 3 matrices [49]. By applying the Bloch-
periodic boundary conditions in both x and y axes, i.e.,
Uα

m,n = Uαeiωt−iqxm−iqyn with the normalized wave vectors
qx = kxd/2, qy =

√
3kyd/2, Eqs. (3) can be mapped into an

eigenvalue problem which leads to the dispersion curves of an
infinite MGG as shown in Figs. 2(a) and 2(b).

Considering that the MGG in experiments is of a finite size
21 × 41, there are free zigzag edges at positions (m, n) =
(1, n), (m, n) = (21, n) and free armchair edges at (m, n) =
(m, 1), (m, n) = (m, 41). At the mechanically free bound-
aries, which can be obtained by removing parts of the neigh-
bors of edge beads, the beads are interacting with a smaller
number of neighboring beads than in the volume. Therefore,
the boundary conditions are derived from the cancellation of
interactions between the removed beads and the edge beads,
which leads to the following boundary conditions:

M0UB
1,n + D1UA

1,n = 0, (4a)

M1UA
21,n + S1UB

21,n = 0 (4b)

for the zigzag edges, and,

M2UA
m,1 + S3UB

m−1,0 = 0, (5a)

M3UB
m,1 + D3UA

m+1,0 = 0, (5b)

M4UA
m,41 + S2UB

m−1,42 = 0, (5c)

M5UB
m,41 + D2UA

m+1,40 = 0 (5d)

for the armchair edges with Mj ( j = 0, 1, 2, 3, 4, 5) 3 × 3
matrices [49]. To account for dissipation, a phenomenological
onsite damping term [50] has also been introduced into the
right-hand side of Eqs. (3), −1/τU̇

α

m,n, with τ characterizing
the decay time of waves. This coefficient has been chosen to
fit the experimental results. More details about the dissipation
implementation can be found in Appendix C.

III. DISPERSION CURVES AND DIRAC POINT

Figures 2(a) and 2(b) present the dispersion curves of an
infinite granular graphene without dissipation. The color scale
level reflects the weights of u (red curves) and v (green curves)
components in each mode. To measure the MGG dispersion
in experiments, in-plane motion has been activated using a
frequency sweep excitation from 500 Hz to 35 kHz by the
bead driver located at position (1, 22). The u, v components
of particle B in each unit cell are collected by the laser
vibrometers. By scanning all particles B, the translational
signals of beads B in a hexagon pattern for the frequency
sweep are obtained. By conducting a double Fourier trans-
form, the spatial distribution of translational signals for each
frequency is transformed into an isofrequency contour in the k
space. We select those modes along the principal directions of
propagation in the isofrequency contours, which are the K →
* → M → K directions as shown in the inset of Fig. 2(a).
Thus, the experimental dispersion curves are obtained as
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shown in Figs. 2(e) and 2(f). The corresponding numerical
dispersion curves, mimicking the experimental process, are
displayed in Figs. 2(c) and 2(d) for the u and v components,
respectively. Figures 2(c)–2(f) indicate that up to ∼20 kHz,
the experimental dispersion curves are in good agreements
with both the theoretical and numerical curves since the
branches are translation dominated. As expected, the branches
with frequencies above ∼20 kHz are absent due to the fact
that these modes are rotation dominated, which are not easily
detected by the laser vibrometers.

Interestingly, Figs. 2(e) and 2(f) reveal the band crossing
at the K point around frequency 10 kHz. The observation of
this crossing provides evidence of the Dirac cone in MGG,
originating from the honeycomb lattice symmetry. As shown
in Appendix B, there are theoretically two Dirac cones with
the Dirac frequencies ω± in granular graphene considering
the in-plane motion. The band crossing around 10 kHz cor-
responds to the Dirac point ω− at the K point of the Brillouin
zone (BZ). Note that another Dirac cone is also predicted
around ω+ ∼ 24 kHz [Figs. 2(a) and 2(b)]. However, this
Dirac point is not visible in Figs. 2(e) and 2(f) due to the fact
that the translation signals around 24 kHz are weak and thus
hidden in the color scale.

In order to observe the ω+ Dirac point in the MGG,
another set of experiment has been performed around the
target frequency. Experimentally, we choose the source to
be a frequency sweep excitation from 18 to 26 kHz. How-
ever, there are still two main difficulties to be overcome:
(1) Collection of the weak translational signals. Since the
modes are dominated by rotation over this frequency region,
the signal of translational components is consequently weak.
Thus, these rotation-dominated modes are not easily detected
by the laser vibrometers since they are only sensitive to
changes due to displacements of beads. When dissipation
is also taken into account, the weak translational motion
becomes weaker due to the attenuation during propagation.
(2) The resolution of the Dirac point. Since the number of
the eigenmodes is related to the size of the MGG, larger size
of the structure results in a larger number of eigenmodes,
which in turn lead to better resolution of dispersion around
the Dirac point. However, as explained in (1), large size of
the sample can lead to disadvantages for measurement due
to the fact that the translational signals of the particles far
away from the source are too weak to be measured by the
vibrometers. As a compromise, in this experiment for the
ω+ Dirac point, we chose the size of sample to be 11 × 41.
This keeps the resolution point along the qy unchanged, but
decreases the length along qx to reduce the influence of at-
tenuation on the translational signal. By reconstructing a new
sample of size 11 × 41 with stainless steel beads (diameter
8 mm, density 7650 kg/m3, Young’s modulus 210 GPa, and
Poisson’s ratio 0.3), the precompression between beads in
this sample is measured to be around F0 = 1 N. Therefore,
we calculate the Dirac frequency to be at ω+ ∼ 22.585 kHz.
By scanning all the particles B and doing the 2D real-
reciprocal space Fourier transformation, isofrequency contour
of a given frequency can be obtained. In Fig. 2(g), we show
the isofrequency contours at the Dirac frequency ω+ obtained
experimentally and numerically considering the same size of
sample and dissipation. We observe that the mode at ω+,
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FIG. 3. Zigzag and armchair edge waves predictions. (a) Edge
wave dispersion curves for the zigzag and armchair edges. (b) Zoom
around 20 kHz. The gray regions represent the bulk modes, the
red (blue) lines correspond to the edge wave branches. The modes
marked in the edge branches at 24.82 kHz by the yellow dot in (a),
19.88 kHz by the green dots in (b), and 19.62 kHz by the black dot
in (b) are displayed in Figs. 4(d)–4(f).

displayed by the high value in the isofrequency contours, is
only present around the K points which reveals an evidence
of Dirac point in the MGG.

IV. EDGE WAVES

Another interesting feature that appears in the dispersion
of the finite-sized MGG is the existence of branches in the
*K and MK directions around 20 kHz [green ellipses in
Figs. 2(c)–2(f)]. These branches correspond to edge waves
and, in this section, we will study these first theoretically and
then experimentally.

By considering free boundaries in Eqs. (4) and (5), the
edge wave dispersion for the zigzag and armchair edges is
calculated [see Fig. 3(a)]. In the calculations of the edge
dispersion, we assume that the free zigzag (armchair) edges
are located at m = 1 and 21 (n = 1 and 41), while along
the y (x) axis are infinite. Therefore, based on Eqs. (3)
and the boundary conditions in Eqs. (4) [(Eqs. (5)] along
with the Bloch periodic conditions in the y (x) axis, the edge
wave dispersions in Fig. 3(a) are obtained. The gray regions
correspond to bulk, while the red (blue) curves to edge wave
solutions. In total, two edge branches for the zigzag and three
for the armchair are present. This increased number of edge
states, especially the existence of edge states at the armchair
edge, is not encountered in the genuine graphene. Similar
edge modes have been only reported in photonic lattices with
orbital bands [31], or mechanical honeycomb lattices with
purely in-plane translations [34,35], namely, 2D mass-spring
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FIG. 4. Eigenmode analysis of the MGG. Amplitude distributions of the three components u, v, and ( of edge eigenmodes [right panel,
(d)–(f)] for three different frequencies along with bulk mode [left panel, (a)–(c)] having a frequency close to the edge modes. The edge modes
(d)–(f) correspond to the dots displayed in Fig. 3.

honeycomb systems with two translational degrees of freedom
per sublattice. However, in granular graphene, there are three
degrees of freedom per sublattice (two translations u, v, one
rotation φ). As we will see, this significantly enriches the edge
physics of this system.

Considering the edge wave in the rotation-dominated re-
gion (above ∼22 kHz), as shown in Fig. 3(a), it can be
seen that instead of edge modes at the zigzag edge, an edge
branch appears at the armchair edge. This is different from the
conventional graphene where a flat band of zero edge modes
exists in the zigzag edges [19,24]. In mechanical graphene,
a similar flat band on the zigzag edge fixed boundary con-
ditions. As it was commented in Ref. [35], free boundary
conditions, like the ones used in this work, break the chiral
symmetry on the free zigzag edges, leading to the absence of
the flat zigzag edge modes. In Fig. 3(b), we present a closeup
of the edge wave dispersion around 20 kHz for the zigzag
and armchair cases, respectively. Interestingly, there is an
overlapping region from ∼19.84 kHz to ∼20.07 kHz, where
edge modes can be found on both the zigzag and armchair
edges, while due to the absence of a full bulk gap, bulk modes
also exist.

To shed more light on the edge physics of the MGG, we
carry on eigenmode analysis of the structure. Since the MGG
is of a finite size 21 × 41, a dynamical equation describing
wave behavior of the MGG can be derived from Eqs. (3)–(5)
by taking into account all the coordinate indices m and n.
Consequently, the eigenvalue problem from the dynamical
equation of the MGG can be thoroughly solved. In Fig. 4,
we choose to show several eigenmodes around the edge wave
frequencies. Starting from the rotation-dominated region, we
show two eigenmodes with the eigenfrequencies 24.80 kHz
in Fig. 4(a), and 24.82 kHz in Fig. 4(d). The color scales

of the three components suggest that in this frequency re-
gion, modes are dominated by rotation. This is consistent
with the measured dispersion curves in Figs. 2(e) and 2(f),
where modes are not detected above ∼22 kHz since rotational
signals can not be recorded by the laser vibrometers. It can
be also seen that the eigenmode in Fig. 4(a) shows an ex-
tended property since all parts of the structure are involved
in the motion. However, the eigenmode in Fig. 4(d) exhibits
a property of localization as the motion mostly is confined
only on the free armchair boundaries. Note that, due to the
boundaries, the eigenmodes of a finite-size graphene can be
viewed as the contributions of those bulk and edge modes
of the infinite MGG. Vibrational modes strongly localized at
the edges of the structure can be called as edge modes of the
MGG. Therefore, the extended mode at 24.80 kHz could be
viewed as a mode dominated by the contribution from the
bulk modes of infinite MGG of the gray region of Fig. 3,
while the eigenmode in Fig. 4(d) could be dominated by the
mode marked by the yellow dot in Fig. 3(a) in the armchair
edge mode branch. Regarding the overlapping region, two
eigenmodes close to each other at 19.89 and 19.88 kHz are
presented in Figs. 4(b) and 4(e), respectively. It shows that the
eigenmode in Fig. 4(b) also exhibits an extended property with
translations involving most part of the structure, while the
eigenmode in Fig. 4(e) has a localized mode property similar
to the one in Fig. 4(d) but with motion constrained on both
the zigzag and armchair boundaries. Thus, this eigenmode at
19.88 kHz has a dominant contribution from the edge modes
of infinite granular graphene in the zigzag and armchair edge
branches labeled by green dots in Fig. 3(b). The structure of
this eigenmode confirms the prediction of the existence of
edge branches in both zigzag and armchair ribbon [blue, red
curves in Fig. 3(b)]. Finally, in the region that lies below the
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overlapping region (∼19.61 kHz to ∼19.84 kHz) [Figs. 4(c)
and 4(f)], the behavior of eigemodes is quite similar to those
in Figs. 4(b) and 4(e) but with the absence of motion in the
armchair boundaries. The eigenmode at 19.62 kHz [Fig. 4(f)]
is confined only on the zigzag edges, indicating the dominant
contribution from the edge mode in the zigzag branch of the
infinite graphene marked by the black dot in Fig. 3(b).

Another intriguing property observed in Fig. 4 is that
the extended modes in the region from ∼19.61 kHz to
∼20.58 kHz manifest a very interesting behavior. As shown in
Fig. 4(b), the translational components u, v of the eigenmodes
are spread in the whole finite structure but the rotation is lo-
calized only in the boundaries. In Fig. 4(c), similar properties
as the one in Fig. 4(b) are observed, but now the rotational
component is only confined in the zigzag boundaries as the
rotation of the edge mode in Fig. 4(f). This highlights a
behavior of the dynamics in finite-size granular graphene,
where one can find modes with extended translations in the
structure while localized rotation on the boundaries. To the
best of our knowledge, such a behavior has not been reported
before in other graphene structures, and the rich wave physics

originates here from the extra rotational degree of freedom.
As a result, the rotation of the beads can have a very distinct
behavior compared to the translation of the beads in the MGG.
This can lead to interesting potential applications like rotation
isolation devices in a more general mechanical system and
advanced wave control.

The existence of edge waves in the MGG can be confirmed
directly in experiment. To observe the edge wave propagation,
the experimental setup is the same as the one shown in
Fig. 1(c), while a harmonic signal of duration 10 ms with an
initial linear ramping has been used as the source. All particles
B are still scanned to record the u, v components. Figure 5
displays the measurements of total displacement amplitude
(
√

u2 + v2) for two separate times with a signal at 20 kHz.
As shown in Fig. 5(a), when t = 1.7 ms, the displacements
are primarily localized on the zigzag edge while decaying
into the bulk. Despite the excitation of bulk waves at this
frequency, decay of the bulk wave is expected due to both
dissipation and 2D geometrical spreading which provides a
better observation of the elastic edge wave at 20 kHz. The
numerical simulation of the experimental process is shown

184113-6



GRANULAR GRAPHENE: DIRECT OBSERVATION OF EDGE … PHYSICAL REVIEW B 99, 184113 (2019)

in Fig. 5(c), where the translational components of just the
particles B are shown. A good agreement between experiment
and simulation is achieved.

V. TURNING EFFECT OF EDGE WAVES

We now turn our attention to the frequency range at which
edge modes coexist in both zigzag and armchair boundaries.
For example, since 20 kHz is located in this frequency range,
one should expect that when the zigzag edge wave of 20 kHz
reaches the corner, this wave can be mode converted into an
armchair edge wave. From the eigenmode analysis, we found
that around 20 kHz there are several edge modes localized
both in the zigzag and armchair boundaries, for example, at
19.86 kHz, 19.88 kHz, 19.93 kHz, 19.98 kHz, 20.03 kHz, and
20.04 kHz [see Fig. 4(e) for the case of 19.88 kHz]. Due
to the dissipation, characterized by a decay time τ = 1 ms,
these modes possess a finite bandwidth of the order of
∼1/τ = 1 kHz. Therefore, these modes are all included in
the frequency range around 20 kHz due to dissipation. This
ensures that a harmonic driving at 20 kHz can excite the edge
waves (plus other bulk modes) that turn the corner from zigzag
to armchair edges. To observe this phenomenon, the spatial
pattern at t = 3.7 ms is depicted in Figs. 5(b) and 5(d). In-
deed, wave motions are seen to be localized on both the zigzag
and armchair boundaries. This can be further confirmed by the
closeup of the experimental spatial pattern of motion at the
lower MGG corner as presented in Fig. 5(e). To demonstrate
this turning effect more clearly, we have chosen two particles
marked by black and blue hexagons in Fig. 5(e) and we plot
their time evolution in Fig. 5(f). In addition, Fig. 5(g) provides
the spatial distribution of edge waves, which are obtained
from experiments and simulations by focusing on rows n =
22, n = 32 and column m = 10, as labeled in Fig. 5(b) by
arrows. In rows n = 22 and 32 the motion distribution of the
mode shows a similar profile (the amplitude is normalized
to the first bead on the left zigzag edge), confirming the
edge mode property as the motion propagates along the edge
while decays very fast into the bulk (a distance of around
x = 9d). For m = 10, i.e., bottom panel of Fig. 5(g), the

translational signal also reveals a localized profile close to the
armchair boundary confirming that the movement of beads in
the armchair edge is due to the turning effect but not from
the bulk modes. Note that, as indicated in Figs. 5(b) and 5(d),
due to dissipation and slow propagation velocity, the edge
wave at 20 kHz on the armchair edge is damped before
propagating a long distance, e.g., 15d. Further investigation
of zigzag and armchair edge wave dynamics both with and
without losses can be found in Ref. [49]. Note also that
the spatial pattern in Fig. 5(b) shows a small asymmetry of
wave propagation in the upward and downward directions in
the experiments. This is most likely due to uncertainties in the
precompression forces and asymmetric excitation of motion
due to small misalignment between the driving bead and the
setup.

We now investigate the edge wave propagation along a
corner of an angle of 120◦, which connects a zigzag to another
zigzag boundary. Considering that the experimental MGG is
still of a finite size 21 × 41, there is a free zigzag boundary at
(m, n) = (1, n). In order to build the second zigzag boundary,
the particles above the line connecting the position (m, n) =
(1, 11) and (m, n) = (12, 1) are removed (see Fig. 6). The
experimental setup for zigzag to zigzag edge waves measure-
ment is the same as that shown in Fig. 1(c), where a harmonic
signal of duration 10 ms with an initial linear ramping and a
frequency of 20 kHz has been used as the source at position
(m, n) = (1, 26). All particles B are still scanned to record the
u, v components. Since edge modes are found on the zigzag
edges at around 20 kHz, one expects that when the zigzag
edge wave reaches the 120◦ corner, this wave can turn to the
other zigzag boundary. To observe this phenomenon, Fig. 6(a)
displays the measurements of total displacement amplitude
(
√

u2 + v2) at a given time after reaching the steady state.
Numerically, the simulation of the experimental process is
shown in Fig. 6(b), where the translational components of
only the particles B are shown.

Indeed, wave motions are seen to be localized on the
new zigzag edge and a good agreement between experiment
and simulation is achieved. We can observe that bulk waves
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FIG. 6. Edge waves observation: turning effect of edge waves from the zigzag to the zigzag boundary. The spatiotemporal patterns of
motion for a modified MGG with zigzag to zigzag edges. A harmonic wave at 20 kHz is excited from the source (green star). The experimental
result is shown in (a) where the gray zone corresponds to a region not experimentally scanned while (b) is the simulations. (c) Translation
distributions of beads motion along the blue and green lines depicted by the arrows in (b).
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are also present because there is no gap for bulk mode at
this frequency. In addition, Fig. 6(c) provides greater detail
for the spatial distribution of zigzag edge waves at a given
point of time by focusing on rows n = 18, and cut line from
(m, n) = (5, 8) to (m, n) = (9, 20), as labeled in Fig. 6(b) by
arrows. The two profiles in Fig. 6(c) have a similar form with
the translational signals becoming very weak (the amplitude
is normalized to the first bead of each zigzag edge) after a
distance of around x = 9d. This confirms that bead movement
in the new zigzag boundary is due to the turning effect from
the zigzag to zigzag edges but not from the bulk modes.

VI. CONCLUSIONS

In this work, we propose an artificial graphene called mag-
netogranular graphene. This structure is composed of stainless
steel beads in contact and placed in a properly designed
magnetic field. The latter magnetizes the beads resulting in
equivalent precompression forces between beads, and thus
a mechanically stable structure, free of mechanical borders.
The MGG proposed in this work can be used as a perfect
experimental benchmark for fundamental study of Dirac and
edge wave physics in mechanical systems.

Considering the wave behavior in the MGG, first we obtain
the dispersion relation and the Dirac points. Then, we turn our
attention to the edge physics of the structure. We show that
the MGG supports unconventional edge waves that can exist
also in armchair free boundaries, in contrast with genuine or
other artificial graphene. In addition, we show that for a range
of frequencies, the structure supports edge vibrations both on
the zigzag and armchair boundaries. Interesting enough, in
this region the bulk modes are extended in their translation
motions but localized at the edges regarding their rotation
motion. Such a unique behavior has not been reported before
to the best of our knowledge. Applications such as rotational
isolators could be then designed using MGG or other flexible
mechanical metamaterials with rotational elements [51–53].

Moreover, we also demonstrated that the coexistence of
edge wave solutions in both zigzag and armchair boundaries
lead to a turning effect from zigzag to armchair/zigzag free
boundaries. This does not require a full bulk gap, which
normally is necessary in the scenario of pseudospin topolog-
ically protected wave propagation, like the case of helical
edge waves. The role of the topology in MGG, like in the
recent works of higher-order topological insulators, is a re-
maining intriguing question and might lead to potential study
of novel topological phase in mechanical systems. Finally,
taking advantage of the intrinsic nonlinearities of the granular
crystals, the MGG proposed herein offers a perfect platform to
explore a wide array of nonlinear bulk, edge waves in mechan-
ical graphene, similarly to solitons [54,55], nonlinear waves
[56–59], and breathers [60,61] in simpler crystal structures.
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APPENDIX A: CONTACT DESCRIPTION
IN GRANULAR GRAPHENE

Considering the in-plane motion in the magnetogranular
graphene (MGG), there are normal, shear, and bending inter-
actions characterized by contact rigidities ξn, ξs, and ξb, re-
spectively, as represented in Fig. 1(e). For stiffness of macro-
scopic elastic spheres in the MGG, the contact mechanism
between the beads can be modeled by the Hertzian contact
[47,48]. This leads to the expressions of the rigidities:

ξn =
(

3R
4

F0

)1/3

E2/3(1 − ν2)−2/3, (A1a)

ξs = (6F0R)1/3E2/3 (1 − ν2)1/3

(2 − ν)(1 + ν)
, (A1b)

where R is the radius of the bead, E is the Young’s modulus,
ν is Poisson’s ratio, and F0 is the normal precompression
between the beads. According to the previous study [41], the
bending rigidity can be roughly estimated by

ξb ∼ ξn

(
δ

R

)2

, (A1c)

where δ is the radius of the contact surface between two beads,
which is given by

δ =
(

3R
4E

F0

)1/3

(1 − ν2)1/3. (A1d)

As long as the physical parameters of the beads are known
and the precompression F0 is measured, ξn, ξs, and ξb can be
obtained. In our experiment, the stainless steel beads have
the following parameters: Young’s modulus E = 190 GPa,
Poisson’s ratio ν = 0.3, diameter d = 7.95 mm, and density
ρ = 7678 kg/m3. The procompression can be determined
around F0 ∼ 1.55 N by means of measurement. This leads to
the following rigidities: ξn ≃ 6.19 × 106 N/m, ξs ≃ 5.09 ×
106 N/m, and ξb ≃ 3.04 × 102 N/m.

APPENDIX B: CALCULATION OF DIRAC POINTS

Let us consider the modes at the corner (K point) of the
BZ, by applying the periodic boundary condition, i.e., Uα

m,n =
Uαeiωt−iqxm−iqyn, Eqs. (3) lead to two degenerate modes at the
K point:

ωD± =

√
g ±

√
g2 − h

4M
.

Above, g = 3[ξn + ξs + 2P(ξb + ξs)], and h = 72P(ξnξb +
ξnξs + ξbξs) with P = MR2/I . These degenerate modes origi-
nate from the symmetry of honeycomb lattice, which are two
Dirac points with frequencies ωD± at the K point.

APPENDIX C: DISSIPATION

In order to compare the experimental results with the
numerical simulations, the attenuation of the wave during the
propagation has to be considered. In our model, the attenu-
ation is implemented by a phenomenological linear viscous
onsite dissipation [50] considering a time of decay τ for
elastic waves which can take different values as a function
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of displacement polarization. This leads to extra terms in the
right-hand side of Eqs. (3):

Ü
A
m,n = S0UA

m,n + S1UB
m,n + S2UB

m−1,n+1

+ S3UB
m−1,n−1 − 1

τ
U̇

A
m,n, (C1a)

Ü
B
m,n = D0UB

m,n + D1UA
m,n + D2UA

m+1,n+1

+ D3UA
m+1,n−1 − 1

τ
U̇

B
m,n. (C1b)

Therefore, wave dynamics of the MGG considering dissi-
pation can be described by combining the boundary condi-
tions in Eqs. (4) and Eqs. (5) with Eqs. (C1). We can notice
that Eqs. (C1) are second-order ordinary differential equations
of time. As a consequence, we numerically obtain the time
evolution of elastic wave propagation in the structure by solv-
ing Eqs. (C1) using Runge-Kutta fourth-order method. More
details about the time evolution of elastic wave propagation in
two-dimensional granular crystals can be found in Ref. [42].
By fitting the experimental results with the numerical ones,
we can estimate that τ is about 1 ms for both polarizations of
displacement in our experiment.
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