M. Ackermann, S. C. Stearns, and U. , Senescence in a bacterium with asymmetric division, vol.300, pp.1920-1920, 2003.

E. Bacry, S. Delattre, M. Hoffmann, and J. Muzy, Some limit theorems for Hawkes processes and application to financial statistics, Stochastic Process. Appl, vol.123, pp.2475-2499, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845004

E. Bacry, A. Iuga, M. Lasnier, and C. Lehalle, Market impacts and the life cycle of investors orders, Market Microstructure and Liquidity, pp.1-46, 2015.

E. Bacry, I. Mastromatteo, and J. Muzy, Hawkes processes in finance, Market Microstructure and Liquidity, p.1550005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01313838

M. S. Bartlett, The spectral analysis of point processes, J. Roy. Statist. Soc. Ser. B, vol.25, issue.2, pp.264-296, 1963.

P. Billingsley, Convergence of Probability Measures, Wiley series in probability and statistics, 1999.

C. Bordenave and G. L. Torrisi, Large deviations of Poisson cluster processes, Stoch. Models, vol.23, pp.593-625, 2007.

P. Brémaud and M. L. , Power spectra of general shot noises and Hawkes point processes with a random excitation, Adv. in Appl. Probab, vol.34, pp.205-222, 2002.

P. Brémaud, G. Nappo, and G. L. Torrisi, Rate of convergence to equilibrium of marked Hawkes processes, J. Appl. Probab, vol.39, pp.123-136, 2002.

V. Chavez-demoulin and J. A. Mcgill, High-frequency financial data modeling using Hawkes processes, J. Bank. Finance, vol.36, pp.3415-3426, 2012.

A. Clements, R. Herrera, and S. Hurn, Modelling interregional links in electricity price spikes, Energy Econ, vol.51, pp.383-393, 2015.

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, 1986.

X. Gao and L. Zhu, Large deviations and applications for Markovian Hawkes processes with a large initial intensity, Bernoulli, vol.24, pp.2875-2905, 2018.

, Limit theorems for Markovian Hawkes processes with a large initial intensity, Stochastic Process. Appl, vol.128, pp.3807-3839, 2018.

G. Gripenberg, S. Londen, and O. Staffans, Volterra integral and functional equations, 1990.

A. G. Hawkes, Point spectra of some mutually exciting point processes, J. Roy. Statist. Soc. Ser. B, vol.33, pp.438-443, 1971.

A. G. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, vol.58, pp.83-90, 1971.

M. A. Holbrook and J. R. Menninger, Erythromycin slows aging of Saccharomyces cerevisiae, Biological Sciences and Medical Sciences, vol.57, pp.29-36, 2002.

U. Horst and W. Xu, A scaling limit for limit order books driven by Hawkes processes, SIAM J. Financial Math, vol.10, pp.350-393, 2019.

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 1989.

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, 2003.

P. Jagers, A plea for stochastic population dynamics, J. Math. Biol, vol.60, pp.761-764, 2010.

T. Jaisson and M. Rosenbaum, Limit theorems for nearly unstable Hawkes processes, Ann. Appl. Probab, vol.25, pp.600-631, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01138784

J. C. Jiang, E. Jaruga, M. V. Repnevskaya, and S. M. Jazwinski, An intervention resembling caloric restriction prolongs life span and retards aging in yeast, The FASEB J, vol.14, pp.2135-2137, 2000.

D. Karabash and L. Zhu, Limit theorems for marked Hawkes processes with application to a risk model, Stoch. Models, pp.433-451, 2015.

C. Klüppelberg and T. Mikosch, Delay in claim settlement and ruin probability approximations, Scand. Actuar. J, vol.2, pp.154-168, 1995.

C. Klüppelberg and T. Mikosch, Explosive Poisson shot noise processes with applications to risk reserves, Bernoulli, pp.125-147, 1995.

P. A. Lewis, A branching Poisson process model for the analysis of computer failure patterns, J. Roy. Statist. Soc. Ser. B, vol.26, pp.398-456, 1964.

K. Maulik and S. Resnick, Small and large time scale analysis of a network traffic model, Queueing Syst, vol.43, pp.221-250, 2003.

Y. Ogata, Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer. Statist. Assoc, vol.1, pp.228-281, 1988.

A. G. Pakes, Limit theorems for the integrals of some branching processes, Stochastic Process. Appl, vol.3, pp.89-111, 1975.

G. Samorodnitsky, A class of shot noise models for financial applications, Athens Conference on Applied Probability and Time Series Analysis, vol.I, pp.332-353, 1995.

G. Stabile and G. L. Torrisi, Risk processes with non-stationary Hawkes claims arrivals, Methodol. Comput. Appl. Probab, vol.12, pp.415-429, 2010.

C. Stephens, Senescence: even bacteria get old, Current Biol, vol.15, pp.308-310, 2005.

G. J. Tortora, B. R. Funke, C. L. Case, and T. R. Johnson, Microbiology: An Introduction, 2016.

D. Vere-jones, Stochastic models for earthquake occurrence, J. Roy. Statist. Soc. Ser. B, vol.32, pp.1-62, 1970.

J. B. Walsh, An introduction to stochastic partial differential equations, InÉcole d'Été de Probabilités de Saint Flour XIV-1984, pp.265-439, 1986.

J. G. Wood, B. Rogina, S. Lavu, K. Howitz, S. L. Helfand et al., Sirtuin activators mimic caloric restriction and delay ageing in metazoans, Nature, pp.686-689, 2004.

W. Xu, Scaling limits for Crump-Mode-Jagers processes with immigration via stochastic Volterra equations

L. Zhu, Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims, Insurance Math. Econom, vol.53, pp.544-550, 2013.