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Abstract

The feasibility of using the band structure of a crystal to realize directional emission of water waves is investigated
numerically and experimentally. The directionality of a source inside a square array of cylinders is obtained
numerically for a perfect lattice in a lossless liquid. But in the experiments, the directivity is weakened, due to the
effects of losses. Nevertheless, the waves are shown to satisfy the Helmholtz equation when proper attenuation is
accounted for. Thus, the robustness of the directionality is studied numerically with respect to the effects of the
attenuation and of the disorder. To cite this article: A. Name1, A. Name2, C. R. Mecanique 333 (2005).

Résumé

Source directive de vagues dans un cristal de cylindres émergeant en surface. On étudie la faisabilité
d’une source directive pour les ondes à la surface de l’eau, basée sur les propriétés de la structure de bande d’un
cristal. Cette directivité est caractérisée numériquement pour un réseau périodique de cylindres rigides dans un
fluide parfait. Dans l’expérience, la directivité est affaiblie, à cause de l’atténuation. Cependant, en prenant en
compte cette atténuation, la propagation des ondes est toujours correctement décrite par l’équation de Helmholtz.
Aussi, la robustesse de la directivité est-elle étudiée numériquement plus en détail, vis-à-vis des effets d’atténuation
et de désordre.
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Version française abrégée

Dans cette étude, la directivité d’une source d’émission placée dans un réseau périodique est étudiée,
numériquement et expérimentalement, dans le contexte des ondes de gravité se propageant à la surface
de l’eau. Si ces ondes satisfont, dans des cas limites, une équation d’onde identique à celle vérifiée par
les ondes acoustiques et par les ondes électromagnétiques en deux dimensions (l’équation de Helmholtz,
Eq. (1)), elles présentent une complexité souvent négligée. Dispersives, non-linéaires dans des conditions
usuelles, susceptibles d’être affectées par des modes évanescents dans le volume du fluide dès que la
bathymétrie du fond sous marin varie brutalement, d’être affectées par le comportement de ménisques
pour des obstacles émergeant hors de l’eau, les phénomènes attendus par simple inspection de l’équation
de Helmholtz doivent être regardés avec vigilance au regard d’expériences qui diront si, oui ou non, ces
phénomènes sont robustes. Dans ce papier, nous donnons des éléments de réponse à cette question dans
le cas de l’hyper directivité prédite par Mei et al. [13] dans le contexte des ondes à la surface de l’eau.
Pour ce faire, nous caractérisons, numériquement et expérimentalement, les ondes émergeant d’un réseau
périodique (un cristal de taille fini) pour une fréquence en bord de bande, c’est-à-dire pour laquelle la
structure de bande prédit que seul un étroit faisceau d’onde peut s’échapper d’une structure périodique
lorsqu’une source est placée en son centre. Cette directivité de la source est testée expérimentalement,
pour un réseau de cylindres émergeant (Figure 1).

Dans la section 2, nous montrons que pour une fréquence au bord de la bande interdite, et pour une
position disymmétrique de la source dans le réseau, une très bonne directivité peut être obtenue (position
B sur la Figure 1) ; cette directivité est illustrée par le diagramme d’émission (Figure 2(c)) ainsi que par le
comportement d’indicateurs (i) la section totale de diffusion, Eq. (5), qui mesure l’énergie totale sortant
du réseau et par (ii) une mesure de la directivité D, Eq. (6), qui mesure la proportion de l’énergie contenue
dans les faisceaux directifs autour des directions ϕ = 0, π (le long de l’axe x). La figure 3 montre que ces
deux indicateurs présentent un optimum pour la fréquence en bord de bande f = f0 = 5.69 Hz et pour
une source en position B, réalisant ainsi une source directive. Dans la Section 3, cette prédiction est testée
expérimentalement. Nous utilisons une technique de profilométrie par transformée de Fourier (FTP) qui
permet une mesure résolue en temps et en espace du champ des “vagues”, c.a.d. de l’élévation de la
surface libre du fluide (Figure 4), ainsi que la reconstruction du champ complexe η1(x, y) correspondant
à la fréquence d’excitation de la source, Eqs. (7)-(8). Les expériences sont conduites pour une position de
la source en A, non directive (Section 3.2), et pour une position de la source en B, pour laquelle la direc-
tivité est attendue à la fréquence f0 (Section 3.3). Nous observons que la directivité est affaiblie : Figure
7(a) (champ expérimental) à comparer à (c) (champ théorique). Ceci est due à une atténuation très forte
dans le système réel, et qui est déterminée en ajustant ce paramètre dans la simulation numérique. Dans
tous les cas, un excellent accord expérience/ théorie est alors retrouvé, qualitativement sur les champs
spatiaux, Figs 5 et 7 (a)-(b) et (d)-(e), et quantitativement sur les diagrammes d’émission, Figs 6 et 8.
L’origine de cette forte atténuation est probablement liée au comportement dynamique des ménisques
sur les cylindres, qui n’est pas pris en compte dans la modélisation. Cette étude expérimentale révèle
que l’hyper directivité attendue est sensible à des écarts au cas idéal d’un milieu parfaitement périodique
et sans pertes. Cependant, parce que l’équation modèle de Helmholtz n’est pas mise en défaut, nous
terminons notre étude en Section 4 par une étude numérique plus systématique de la directivité de la
source en fonction de l’atténuation et du désordre dans le milieu, effets qui peuvent exister dans tous les
contextes d’ondes. Il est montré que l’atténuation et le désordre ont le même effet, fort à la résonance,
d’affaiblissement des interférences constructives qui produisent la directivité. Pour conclure, il est cepen-
dant probable que l’affaiblissement de la directionalité observée dans une expérience de laboratoire soit
moins important à l’échelle des vagues en mer puisque l’atténuation est moins forte à cette échelle.
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1. Introduction

Man made photonic and phononic crystals have generated an intense research interest since the 1990’s
for their ability to produce unusual properties of wave propagations [1,2,3]. This is because it is possible
to engineer the band structure to constrain the wave to follow peculiar directions or to produce complete
band gaps where wave propagation is forbidden. Resulting superlensing and self-collimation effects have
been reported for electromagnetic [4,5], acoustic [6,7] and elastic [8,9] waves. More recently, the interest
has been extended to the case of gravity water waves [10,11], because they share, in some limiting cases, the
same wave equation than electromagnetic and acoustic waves. However, surface waves have a complexity
that is often neglected. Dispersive, non-linear in usual conditions, they are also susceptible to be affected
by evanescent modes in the bulk of the liquid as soon as the bathymetry of the sea bottom varies rapidly
and may experience strong damping. To cite Richard Feynman, “[water waves] that are easily seen by
everyone and which are usually used as an example of waves in elementary courses [. . . ] are the worst
possible example, because they are in no respects like sound and light; they have all the complications
that waves can have” [12]. Thus, the phenomena expected by the simple inspection of the Helmholtz
equation have to be considered carefully by means of experimental studies, able to say whether or not
the phenomena are robust.

In 2010, Mei and co-authors [13] proposed the design of an highly directional source for water waves
based on the band-structure of a periodic array of surface piercing cylinders. The idea behind directionality
is to work at a frequency very near the complete band gap where only small angular regions allow the wave
propagation, most of the directions being otherwise forbidden. In this paper, we inspect experimentally the
feasibility of such directional source. This is done by using a space-time resolved profilometry technique
able to provide quantitative measurements [14,15,16], beyond the usual qualitative visualizations. The
paper is organized as follow. In Section 2, we use numerical calculations of Multiple Scattering Theory
(MST) to design the crystal. Following [13], two positions of the source are considered among which only
one provides the expected directionality, when working at the band edge frequency. Section 3 presents the
experimental results in the same conditions. It is found that the wave experiences an high attenuation,
or damping, which weakens the directivity. Nevertheless, it is shown that the wave field still satisfies
the Helmholtz equation, which is proven by computing MST solutions using the damping as adjustable
parameter. The fitted damping is unexpectedly high, and might be attributable to the dynamics of the
contact lines of the meniscus at the cylinders [17,18]. This attenuation is responsible for the some loss
of directivity, not only because less energy emerges from the array but because it changes the directivity
function, that is the directionality of the structure. Accounting for actual attenuation in the numerics
allows to get an excellent agreement with the experimental results. As the validity of the Helmholtz
equation is not in question, we end our study in Sec. 4 by inspecting more systematically the influence of
the attenuation and of the disorder on the efficiency of the directional source.

2. Configuration of the set-up to produce directive source

The propagation of water waves, in the frequency regime (frequency ω), is described by the Helmholtz
equation

(∇2 + k2)η(r, ω) = 0, (1)

where η is the water height and k is the wavenumber. This equation is obtained under the assumptions
that the flow is incompressible, irrotational, inviscid and that the water depth at rest, h0, is constant (flat
sea bottom) [19]. Then, k is given by the dispersion relation for linear water waves
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ω2 = gk tanh(kh0), (2)

with g the gravity constant. In the presence of rigid, surface piercing, obstacles, Neumann boundary
condition applies

∂nη| Rig.Obs. = 0, (3)

with ∂n the normal derivative. This translates the slip boundary condition for inviscid fluid and omits the
presence of meniscus. These simplified equations for water waves present an analogy with the acoustic
and electromagnetic waves. In this section, we follow the idea of Ref. [13] to build a set-up, based on the
band structure of a crystal and able to produce an ultra directional source of water waves.

Figure 1. Geometry of the 6×6 square lattice (a) side view and (b) top view, (c) experimental set-up; A and B show the

two source positions inside the array.

The crystal consists of vertical rigid surface piercing cylinders of radius a = 10 mm equally spaced on
a square array of periodic d = 30 mm, resulting in a filling fraction of φ = πa2/d2 ' 0.35. The structure,
composed of 6×6 cylinders, is immersed in water of depth h0 = 33 mm (Fig. 1). The small dimension of
the array will be justified later, in view of the attenuation experienced by the wave in the practice. Two
positions of the source are inspected. The position A is at the center of the square array; in the position
B, the source is shifted by d/2 along the x-axis; this latter position of the source point has been shown
to produce the highly directional source [13]. The band structure of the infinite crystal has been given in
[13], exhibiting a complete band gap below the frequency f0 being the band-edge frequency (f0 = 5.69
Hz in our case). Just above the band edge, the directions ΓK (ϕ = 0, π along x and ϕ = ±π/2 along y in
Fig. 1(b)) become propagating with high density of states. It results an angular band gap able to narrow
the angular distribution of a beam generated by a source point located inside the array. This is the basic
idea behind the concept of ultra directional wave source.

We performed numerical calculation of the solution in the idealized case of Eqs. (1)-(3) using Multiple
Scattering Theory (MST, see e.g. [13,20]) for our array of rigid cylinders and for a line source emitting
cylindrical waves (at position A or B). For the ease of comparison with experimental measurements, and
to quantify the angular distribution of the water wave beam, we use the normalized directivity function
of the wave intensity
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ftot(ϕ) ≡ 2π
|η(r, ϕ)|2∫ 2π

0
dϕ |η(r, ϕ)|2

, (4)

with η(r, ϕ) being calculated at distance r from the source (in the practice, r = 120 mm will be used).
Note that, for this low value of r (wavelengths will be typically in the range 30 to 60 mm), ftot does
not correspond to the definition of the directivity function, being usually defined in the far field region.
Again, this is due to the actual damping in the experiments which renders unaccessible the far field region;
nevertheless, we have checked that the tendencies observed in this quite near field remain the same in
the far field. MST solutions have been calculated for f = f0 = 5.69 Hz and f = 6.13 Hz. The directivity
functions are reported in Fig. 2 for the point source at positions A and B. As observed in [13], point source
at position A does not reaches directional emission while the non symmetrical position B reaches this goal,
because of the cut off of the emission branches at ϕ = π/2, 3π/2 (along y). Also, the lobe corresponding
to the beam emerging at ϕ = 0 is lower than the one corresponding to the beam emerging at ϕ = π
because the distance of propagation from the source is higher. Note that this relative weakness of the
lobe at ϕ = 0 is not due to the attenuation inherent to water wave (and which occurs in infinite medium)
since this latter is not accounted in the present MST calculations, but to the attenuation due to multiple
scattering by the cylinders (3 rows between the source and the array exit in the direction ϕ = 0 and only
2 rows in the direction ϕ = π). The wavefields corresponding to these 4 cases will be reported latter in
Figs. 6 (c) and (d) and Figs. 8 (c) and (d) respectively, for comparison with experimental wavefields.

Position A Position B

(a) f = 5.69 Hz (b) f =6.13 Hz (c) f = 5.69 Hz (d) f =6.13 Hz

Figure 2. Directional emission, ftot(ϕ) in Eq. (4), of the source embedded in the lattice (a)-(b) with the point source at A
and (c)-(d) with the point source at B. Frequencies are (a) and (c) at f = f0 = 5.69 Hz (band edge frequency), (b) and (d)

at f = 6.13 Hz. Corresponding wavefields are shown in Figs. 6(c) and (f) for position A and 8(c) and (f) for position B.

Next, to quantify the emission of the array, we define two quantities: (i) the total cross section

σt =

2π∫
0

dϕ |η(r, ϕ)|2, (5)

which represents the wave energy, from the source, which emerges from the array and this quantity is
normalized by σinc which represents the wave energy, from the source, in the absence of the array. (ii)
Also, as an indicator of the proportion of the wave energy emerging in beams along the x-direction, we
use

D =
1

σt

 ∆ϕ/2∫
−∆ϕ/2

dϕ |η(r, ϕ)|2 +

π+∆ϕ/2∫
π−∆ϕ/2

dϕ |η(r, ϕ)|2

 , (6)
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and isotropic emission would correspond to Diso = ∆ϕ/π; in the following, we will use ∆ϕ = 2π/45 (8◦).
Thus, the value of D will be compared to the isotropic emission value Diso ' 0.04. Obviously, highly
directional sources have to correspond to high values of the quantities σt/σ

inc and D.

(a) (b)

Figure 3. (a) Total cross section σt/σinc as a function of the frequency. (b) Directivity D, reflecting the energy transported
by the beams emerging along the x-direction (with angular aperture ∆ϕ = 8◦).

Figs. 3 report the variation of σt/σ
inc and D as a function of the frequency. The range of considered

frequencies covers the complete band gap (f between 5 and 5.5 Hz) and the band edge frequency f0.
From both figures, the following tendencies are observed, in agreement with [13]: In the full band gap, the
wave remains trapped within the array, all directions being associated to evanescent waves, and very few
energy can escape from the array (however, non zero values are found since the energies are calculated
in the near field where the evanescent waves are not completely damped). Only the position B results in
a high directivity, with D about 10 times higher than the reference isotopic emission; as expected, this is
obtained for the band edge frequency f0 = 5.69 Hz.

We will now confront this prediction with results obtained in a laboratory experiment, and it is useful
to note that, in the context of water waves, the presented modelization has an high level of idealization.

3. Experimental results

3.1. Experimental measurement of the wave field

The experimental set-up is shown in Fig. 1. The lattice is composed of brass cylinders placed in a rect-
angular tank, filled with water with depth at rest h0=33 mm. The dimension of tank is 174×68 cm2. The
point source is realized using a linear motor equipped with a thin tip, moving vertically with a sinusoidal
motion at frequency f (at position A or B, Fig. 1). The wavefield is measured using an optical method
(Fourier Transform Profilometry) adapted by our group to achieve space-time resolved measurements
of the free surface elevation [21,22,23]. This technique requires diffusive reflection of light on the liquid
surface, which is achieved by adding white pigments. As a compromise between diffusive properties of
the liquid and low reflection of the waves at the wall tank, we use pigments which produce attenuation
α=2.5 to 3.5 m−1 in the frequency range 5.5-6.2 Hz [23]. The measurement domain is 250 × 350 mm2

with a pixel size of 0.37 mm (Figure 4(a)). The temporal resolution is controlled by the frame rate of the
high speed camera which is fixed at 100 Hz for our experiments. A typical instantaneous field of the free
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surface elevation η(r, t) measured by FTP is show in Figure 4(b). In this example, the point source is
located at the position A; as expected, the wave has very low amplitude (about 0.1 mm while the source
generates waves of amplitude about 1 mm), and it is not concentrated onto a thin beam. Also, the field
is not smooth; this is partially due to noise in the measurements, but also attributable to the non linear
generation of harmonics, even at these low wave amplitudes.

(a) (b) (c)

Figure 4. (a) Picture corresponding to the measurement domain, as recorded by the camera, (b) Typical instantaneous
measured field using FTP (the colorbar is in mm, for the values of η(r, t)), (c) Real part of the complex field corresponding

to the linear field η1(r), Eqs. (7)-(8)

In order to evaluate quantitatively the amplitude and phase of the field corresponding to the fundamen-
tal frequency (hereafter referred as the linear field), and to the harmonics generated by the non linearities,
the signal η(r, t) is expanded as a Fourier series:

η(r, t) =
∑
n

ηn(r)e2inπft , (7)

where f is the frequency of the point source, and where the ηn are complex amplitudes. Notably, the
linear field η1(r) can be computed from the measured fields

η1(r) =
2

tf

tf∫
0

dt η(r, t)e2iπft, (8)

with tf a time which is chosen as a multiple of the wave period. Fig. 4(c) shows the real part part of the
linear field η1(r)e2iπft corresponding to the total field of Fig. 4(b). To measure the whole field emerging
from the array and to characterize the directivity function at r = 120 mm, we perform two measurements
as presented above, separately for x > 0 and x < 0 (by moving the camera). We checked that for the
source in position A, the fields are symmetric with respect to the y-axis and only the one obtained for
x < 0 will be reported. For the source in position B, the whole field will be presented.

3.2. Results for the point source at A

We have seen in the Section 2 that this position does not lead to an efficient directional emission, in
agreement with the numerical results presented in [13] for a similar configuration. Typical results are
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shown in figure 5(a) at the band edge frequency f = f0 = 5.69 Hz and (d) at f = 6.13 Hz, in the pass
band. In these figures, we reported |η1(r)|2, from which the directivity functions defined in Eq. (4) can be
deduced, see red curves in Fig. 6. As expected, the source is not directive, with multiple lobs. To further
compare with the numerics, we report in Figs. 5(c) and (f) the fields of |η(r)|2 obtained with MST as
done in Sec. 2 for a lossless fluid. The disagreement is evident when the losses are not taken into account.

f = 5.69 Hz

(a) (b) (c)

f = 6.13 Hz

(d) (e) (f)

Figure 5. Point source at A. Fields of |η(r)|2 measured with FTP and calculated using MST. (a-b-c) at the band edge
frequency f = 5.69 Hz and (d-e-f) at f = 6.13 Hz. (a) and (d) show the measured |η1(r)|2, Eq. (8), (b) and (e) show

the fields |η(r)|2 computed with MST including attenuation to get the best agreement with the experiments; in (c) with
α=13 m−1 and in (d) α=10 m−1, (c) and (f) show the reference fields |η(r)|2 calculated numerically without attenuation

(α = 0).

To account for the attenuation, we computed the theoretical solution using MST, but adding the
attenuation α which has been characterized accurately for our experiments in a previous study (α ∈
[2.6; 3.5] m−1, see [23]). The obtained patterns, not reported, do not coincide with the present experimental
results. Thus, we computed MST solutions using α as an adjustable parameter. The optimized α -values
are obtained which nicely reproduce our experimental results, both for the wave intensity patterns (Figs.
5(b) and (d)) and for the directivity functions (blue curves in Figs. 6 to be compared with the experimental
red ones). The optimized α-values (13 m−1 and 10 m−1 respectively) are significantly higher than the
ones measured in the absence of the cylinders. We do not have firm explanation for this apparent, or
effective, attenuation due to the array, but we think that it can be attributable to the dynamics of the
contact line at the meniscus, which has been shown to introduce significant damping of water waves,
see e.g. [17,18]. Beyond the interest to understand such damping mechanism and the possible collective
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f = 5.69 Hz, f = 6.13 Hz

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 
simul.

expe.

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 
simul.

expe.

(a) (b)

Figure 6. Point source at position A. Total directivity functions ftot(ϕ), Eq. (4), measured at r = 120 mm. Red curves,

experimental, deduced from the measurement of |η(r)|2. Blue curves, numerical results using MST and with attenuation
(a) α=13 m−1 and (b) α=10 m−1.

effect of the meniscus in periodic arrays, this observation poses the question of wether or not the source
directivity is robust or not. This will be inspected further for a source located at position B, where high
directivity is expected.

3.3. Results for the point source at B

For a point source located at B, we perform the same measurements and data processing as previously.
Results are reported in Figs. 7 and 8. The numerical MST calculations have been performed with the
optimized α-values determined from the results obtained for a source located at A. With these α-values,
the agreement is again excellent between experimental and numerical results, both in the qualitative aspect
of the wave intensity fields (Figs. 7) and in the quantitative directivity functions (Figs. 8) . However, as
observed for the source at A, the attenuation produces a significant modification in the angular response
of the array. In the present case, the directivity of the source is weakened. This is visible in the directivity
functions, with the appearance of additional lobes and the split of the central lobes along the x-direction
but more dramatic because the waves emerging from the array in these directions is damped after few
wavelengths.

These second experiments confirm the sensitivity of the directional emission to the damping. However,
as the numerics is able to describe the experimental results, we can conclude that the mechanism is
sensitive to damping for any context of waves being described by the Helmholtz equation. In the following
section, we inspect numerically this sensitivity as a function of the damping and as a function of the
disorder in the periodic arrangement, which are common deviations with respect to the ideal situation of
a perfectly periodic array in a lossless medium.

4. Influence of attenuation and disorder on the directivity

Guided by the experimental results from previous section and owing to the agreement between ex-
perimental and numerical results with high attenuation factor, we inspect numerically the effects of two
possible sources of deviation with respect to the ideal case: the attenuation of the medium (whatever
being the source of this attenuation) and the disorder in the positions of the cylinders. The MST calcula-
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f = 5.69 Hz

(a) (b) (c)

f = 6.13 Hz

(d) (e) (f)

Figure 7. Point source at position B. Same representation as in Figure 5.

f = 5.69 Hz, f = 6.13 Hz
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Figure 8. Point source at position B. Same representation as in Figure 6.

tions are performed for the 6x6 lattice at the band edge frequency and for a source at B, where the ideal
calculation (perfect periodic lattice and lossless medium) predicts highly directional source.

4.1. Influence of attenuation

We considered 4 values of attenuation α = 1, 3, 5 and 10 m−1. In the considered range of frequency,
this corresponds to waves being typically attenuated after 20, 7, 4 and 2 wavelengths (wavelength are
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typically in the range 3 cm to 6 cm). Results are compared to the ideal case α = 0 realizing high values
of σt/σ

inc and of D. Figure 9 reports the evolutions of the normalized total cross sections σt/σ
inc and of

the parameter of directivity D as a function of the frequency for various α-values.

(a) (b)

Figure 9. (a) Normalized total cross section σt/σinc and (b) factor of directivity D as a function of the frequency f for
various attenuation factors α (in m−1).

The significant decrease in the normalized total cross sections observed in Fig. 9(a) is not a direct
consequence of the attenuation. Indeed, both the incident wave and the scattered waves are damped when
propagating. We have checked that σinc ∝ e−2αr when varying α, as expected. However, σt decreases
faster, resulting in the observed decreased of the normalized value, near the band edge frequency f0 = 5.69
Hz. At f0, σt/σ

inc decreases by a factor 2 for α going from 0 to 1 m−1 (for α = 1 m−1, the wave is damped
typically after 20 wavelengths, being about 5 cm) while it remains almost constant at f = 6.13 Hz. This
is not so surprising if we keep in mind that the band edge corresponds to a Bragg resonance, that is
constructive interferences. In principle, all the waves interfere with the same amplitude, and the efficiency
of the interferences increases with the large “time” spent by the wave within the array. Here, the damping
produces a progressive loss of energy of the successive waves which interfere, resulting in a weakness of
the resonance efficiency.

The decrease in the directivity of the source is less pronounced, with a rather linear decrease of D
with α. We conclude that the main effect of the attenuation is to destroy the resonance mechanism on
which the concept of directional source is based. The wave still emerges preferentially along the expected
direction, but with an amplitude which has been considerably decreased. Only low attenuations, as can
be obtained with electromagnetic, acoustic or elastic waves, leave the resonance intact.

4.2. Influence of disorder on the position

In addition to the losses of the medium, disorder in the position or the strength of the scatterers in
the array can affect the expected directivity. This is inspected by means of a disorder in the positions
of the cylinders within the array. In the MST calculations, we shift the position of each cylinder within
a disc of radius εd. The final position of each cylinder is chosen randomly, resulting in a perturbed
periodic arrangement of the lattice. Finally, to avoid overlapping of the cylinders, ε has to be smaller
than 1/2− a/d ∼ 16 %, and we choose ε = 0, 5, 10, 15 %.

Figures 10 collect the results. We reported, for one realization of the disordered structure, the nor-
malized total cross section σt/σ

inc and the directivity parameter D as a function of the frequency for
various ε values. Same dependences are reported for the quantities averaged over 40 realizations. This
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(a) (b)

(c) (d)

Figure 10. Influence of the disorder on the directional emission. (a-b) Total directivity function σt/σinc and (c-d) directivity
parameter D. (a) and (c) correspond to a typical response of the structure for one realization of the disordered structure

(with amplitude of disorder measured by ε); (b) and (d) correspond to the response of the periodic-on-average structure

(here 40 averages have been performed).

statistical average is believed to correspond to the most probable behavior, from which the behavior of
each individual realization has be close. This becomes questionable when strong disorder is considered
leading to more complicated situations, as the Anderson localization. A typical manifestation of such
complication is the difficulty to make the simple average to converge, because of strong (rare) events that
deviate significantly from the mean behavior, and this seems to appear for ε = 15 %. For smaller disorder,
say around 5%, the directivity is maintained on the mean, and one particular realization is reasonably
close to this mean. In these cases, we observe an important decrease of the energy emerging from the
array at the resonance. Again, this is due to a weakening of the constructive interferences which require
a strict periodicity. Because of the disorder, some of the waves, which should interfere, are lost (they
emerge from the array with any direction), resulting in an effective attenuation due to disorder. Contrary
to the case of an attenuation due to the propagation medium, this effective attenuation does not affect
non resonant propagation; there, the wave experiences mainly single scattering, not sensitive to the exact
position of the scatterers.
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5. Concluding remarks

In this paper, we have investigated the possibility of exploiting the band structure of a periodic square
array to produce the directional sources for water waves, as suggested in [13]. This has been done in an
experiment performed at the laboratory scale, revealing the strong influence of the attenuation which
partly impedes the expected directivity. Nevertheless, we did not observe deviations to the Helmholtz
equation due to the many hypothesis on the fluid and on the sea bottom variation that the derivation
of Helmholtz equation require. Next, we have confirmed numerically that the attenuation being either
characteristic of the losses in the propagation medium or being due to an effective attenuation because
of disorder, weakens the expected directivity. This is because resonances involve long travels of the wave
within the periodic structures, able to produce the resonant constructive interferences, but inherently
more sensitive to any loss of energy within the array.

Our conclusion is twofolds. (i) In the context of water waves, applications to the larger scale of the ocean
waves remain feasible. Indeed, at the scale of wave of meter wavelength, losses are smaller. Nevertheless,
care should be taken in the context of the ocean that the non linearities do not affect the resonance. Work
is in progress in this direction. (ii) Our conclusion concerning the sensitivity of resonant mechanisms is
generic to any context of waves. Bragg type resonances require that the successive waves, which are
expected to interfere constructively, are identical (in amplitude and phase). Any deviation with respect
to this perfect situation has important consequences on the resonance. This is probably a superiority of the
metamaterials with subwavelength structure since they are inherently less sensitive to local modifications
of the microstructure.
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