Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Coupling of finite element and plane waves discontinuous Galerkin methods for time-harmonic problems

Abstract : A coupling approach is presented to combine a wave‐based method to the standard finite element method. This coupling methodology is presented here for the Helmholtz equation but it can be applied to a wide range of wave propagation problems. While wave‐based methods can significantly reduce the computational cost, especially at high frequencies, their efficiency is hampered by the need to use small elements to resolve complex geometric features. This can be alleviated by using a standard finite element model close to the surfaces to model geometric details and create large, simply‐shaped areas to model with a wave‐based method. This strategy is formulated and validated in this paper for the wave‐based discontinuous Galerkin method together with the standard finite element method. The coupling is formulated without using Lagrange multipliers and results demonstrate that the coupling is optimal in that the convergence rates of the individual methods are maintained.
Liste complète des métadonnées

https://hal-univ-lemans.archives-ouvertes.fr/hal-02457824
Contributeur : Gwenael Gabard <>
Soumis le : mardi 28 janvier 2020 - 12:35:36
Dernière modification le : jeudi 29 avril 2021 - 11:22:01

Lien texte intégral

Identifiants

Collections

Citation

Mathieu Gaborit, Olivier Dazel, P. Göransson, Gwenael Gabard. Coupling of finite element and plane waves discontinuous Galerkin methods for time-harmonic problems. International Journal for Numerical Methods in Engineering, Wiley, 2018, 116 (7), pp.487-503. ⟨10.1002/nme.5933⟩. ⟨hal-02457824⟩

Partager

Métriques

Consultations de la notice

90