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Absorption of sound by porous layers with embedded periodic
arrays of resonant inclusions

C. Lagarrigue,a) J. P. Groby, V. Tournat, and O. Dazel
LUNAM Universit�e, Universite� du Maine, CNRS, LAUM UMR-CNRS 6613 (Laboratoire d’Acoustique de l’Universite� du Maine), Avenue
O. Messiaen, 72085 Le Mans, France

O. Umnova
Acoustics Research Centre, University of Salford, Salford, Greater Manchester, M5 4WT, United Kingdom

The aim of this work is to design a layer of porous material with a high value of the absorption coefficient in a wide range of

frequencies. It is shown that low frequency performance can be significantly improved by embedding periodically arranged

resonant inclusions (slotted cylinders) into the porous matrix. The dissipation of the acoustic energy in a porous material due

to viscous and thermal losses inside the pores is enhanced by the low frequency resonances of the inclusions and energy

trapping between the inclusion and the rigid backing. A parametric study is performed in order to determine the influence of

the geometry and the arrangement of the inclusions embedded in a porous layer on the absorption coefficient. The experiments

confirm that low frequency absorption coefficient of a composite material is significantly higher than that of the porous layer

without the inclusions.

I. INTRODUCTION

Traditionally, porous materials are used for noise reduc-

tion. However, when used with rigid backing, porous absorb-

ers are efficient only if distance from their surface to the

wall exceeds a quarter of the sound wavelength. This results

in layers that are too thick if absorption of low frequency

sound is required. The usual way to solve this problem is to

use multi-layered1 structures. The purpose of the present

study is to investigate an alternative to multi-layering by

embedding a periodic set of resonant inclusions which are

small compared to sound wavelength in an otherwise macro-

scopically homogeneous, relatively thin and light porous

layer. In the following, the resonant inclusions with a split

ring (SR) shape cross section are considered. The inclusions

and the porous skeleton are assumed motionless. The config-

uration results in a diffraction grating due to the inclusion

periodicity.2 The influence of a volume heterogeneity on the

absorption and transmission coefficients of a porous layer

without rigid backing was previously investigated using the

multipole method. A periodic set of high-contrast inclusions

in a macroscopically homogeneous porous layer was consid-

ered.3 In that case, the sizes of the inclusions were compara-

ble to sound wavelength in porous medium. It was shown

that the presence of the inclusions leads to either an increase

in the absorption coefficient as in the case of one row of

inclusions, or to a total absorption peak, as in the case of sev-

eral rows set of inclusions (phononic crystal). The changes

in the absorption coefficient were explained by mode excita-

tion due to the presence of periodically arranged inclusions,

which leads to energy entrapment. Furthermore, a “trapped

mode” is excited due to periodicity when the structure

is placed against a rigid boundary2 that increases the absorp-

tion coefficient for frequencies below the quarter-wavelength

resonance of the porous layer. Trapped modes were previ-

ously studied in waveguides4 or periodic structures.5 Here,

the modification of the absorption coefficient due to a peri-

odic arrangement of resonant inclusions embedded into a

porous layer glued to a rigid backing (see Fig. 1) is investi-

gated theoretically, numerically, and experimentally.

The periodicity allows the energy entrapment below the

quarter-wavelength resonance. Bragg’s interference is signif-

icant at higher frequencies and leads to the decrease of the

absorption coefficient when wavelength in the porous layer

is comparable to four times the distance between the center

of the inclusion and the wall. At last, the resonances of the

inclusions can increase the absorption coefficient at very low

frequencies. The investigation is focused on two phenomena,

which are the inclusion resonance and the trapped modes.

II. FORMULATION OF THE PROBLEM

A. Description of the configuration

A geometry of the two-dimensional (2D) problem con-

sidered in this work is shown in Fig. 1. The porous material

is assumed to have rigid frame and, consequently, can be

described as a homogeneous effective fluid with effective

density, q1, and bulk modulus, v1, defined as (time conven-

tion in the form of e�ixt is assumed)

q1 ¼
q0a1

/
1þ 2p�b

�ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ix

2p�c

r !
; (1)

with
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2p�b ¼
r/

q0a1
; 2p�c ¼

r2/2K2

4a2
1q0g

; (2)

and

v1 ¼
cP0=/

c� ðc� 1Þ 1þ 2p�0b
�ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ix

2p�0c

s0
@

1
A
�1
; (3)

with

2p�0b ¼
g/

q0k0
0a1Pr

; 2p�0c ¼
gK0

2
/2

4q0k0
02a12Pr

; (4)

where the Johnson et al.6 model is used for the effective den-

sity, q1, and the Champoux and Allard7 model is used for the

effective bulk modulus, v1. Here, g is the dynamic air viscos-

ity, q0 is air density, Pr ¼ gcp=j is the Prandtl number, cp is

air heat capacity under constant pressure, j is thermal con-

duction coefficient of air, c is the adiabatic constant, P0 is

the static ambient pressure, r is the material flow resistivity,

a1 is the tortuosity, / is the porosity, and K and K0 are char-

acteristic viscous and thermal lengths, respectively. A value

k00 ¼ /K0
2
=8 has been used for the thermal permeability.

The medium, M½0�, is air. The normal displacement

and the pressure are continuous at the interface between the

porous material and the air. Pressure and displacement varia-

tions in the plane wave propagating in rigid porous material

are described by the following equations:

�p ¼ v1rueq; �x2q1ueq ¼ �rp; (5)

with ueq ¼ /uf , and uf is the displacement of the fluid in the

pores.

The inclusion boundaries are considered infinitely rigid

(Neumann type boundary condition on the interface porous

medium/inclusion) and the medium inside the resonant

inclusions is the same porous material as the one outside.

The position of the slit of the inclusion is defined by the

angle, afng. The inclusion is characterized by its outer radius,

re, the opening width, e, the thickness, H ¼ rfnge � r
fng
i ,

and w, the aperture. Thus, the layer is macroscopically

inhomogeneous, with heterogeneity being periodic in the x1

direction with period d. In all simulations the rigid backing

(Neumann type boundary condition) is placed at the top of

the inclusion at x2 ¼ h. The numerical simulations have

been performed using a finite element method (FEM) devel-

oped and validated in the article by Allard et al.8 The mesh

is created by using FreeFemþþ and the problem is solved

by implementing a Johnson-Champoux-Allard model in an

in-house Fortran code specially written for calculating

the acoustic response of 2D periodic media. Linear finite

elements are used to approximate the pressure inside the unit

cell, thereby leading to a discretized problem of 1128 ele-

ments and 714 nodes. The periodicity boundary conditions

(the Floquet-Bloch conditions) are applied on both sides of

the discretized domain. For this to be correctly implemented,

these two sides are discretized with similar nodes, i.e., iden-

tical x2 coordinates.

The initial unit cell is a square of side length 2 cm. The

porous material has the characteristics of Fireflex (Recticel,

Belgium) backed by a rigid plate. Fireflex is a polyether

based foam commercialized for its good fire resistant proper-

ties and acoustic performance. The parameters used for this

porous layers have been determined by classical methods

in ATF, KU Leuven, Belgium (Table I). Calculations are

performed by considering an incident plane wave that propa-

gates from the bottom of the cell along the x2 axis.

III. RESONANCE FREQUENCY OF A SPLIT RING AND
A SCATTERING MODEL

In this section the resonance frequency of a single SR

inclusion is calculated in both air and in porous material.

Moreover, the case of a SR placed close to a rigid boundary

is considered and the dependence of the resonance frequency

on the distance to the wall and slit orientation is studied. The

approach to modeling sound scattering by periodically

arranged SRs is described at the end of the section.

A. Resonance frequency of a split ring in air

SR is a 2D Helmholtz resonator. The resonance fre-

quency of this structure has been calculated in, for example,

Norris and Wickham9 and Krynkin et al.10 Here the calcula-

tions are briefly outlined to emphasize the influence of the

opening radiation impedance on the resonance frequency.

The radiation impedance is defined as the ratio of the aver-

age radiated sound pressure to the particle velocity at the

outer surface of the opening. This influence is important

when the resonance frequency of a SR placed close to the

rigid boundary is calculated. The pressure, p, in air satisfies

the Helmholtz equation, which in cylindrical coordinates, r
and h, is

FIG. 1. Geometry of the problem.

TABLE I. Parameters of the porous foam [Fireflex (Recticel, Belgium)]

used in FEM and semi-analytical calculations.

/ a1 K ðlmÞ K0 ðlmÞ r ðN s m�4Þ

0.95 1.42 180 360 8900
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1

r

@

@r
r
@

@r

� �
þ 1

r2

@2

@h2

� �
pþ k2p ¼ 0; (6)

where k ¼ x=c is the wavenumber in air. The pressure, pi,

and the r-component of particle velocity, vi, inside the circu-

lar cavity are

pi ¼
X1

n¼�1
AnJnðkrÞeinh; (7)

vi ¼
k

ixq0

X1
n¼�1

AnJ0nðkrÞeinh: (8)

Here and everywhere in this section the derivatives of

Bessel functions are taken with respect to their arguments.

Following the approach described in Krynkin et al.,10 a

piston-like motion inside the slit ri � r � ri þ H, �w=2 �
h � w=2 is assumed, with pressure, ph, and particle velocity,

vh, expressed as

ph ¼ Ceikr þ Be�ikr; (9)

vh ¼
1

q0c
ðCeikr � Be�ikrÞ: (10)

This approximation is valid if both resonator wall thickness,

H, and the slit width, e ¼ wri, are small compared to the

wavelength (ke� 1, kH � 1) and the radius ri (e=ri � 1,

H=ri � 1). The coefficients An, B, and C are found from the

following boundary conditions. First, the boundary condition

for the particle velocity on the SR inner surface is

viðr ¼ ri; hÞ ¼ vhðr ¼ riÞðHðhþ w=2Þ �Hðh� w=2ÞÞ;
(11)

where H is a Heaviside step function. Combined with ortho-

gonality conditions, this leads to the following expressions

for the coefficients An:

A0 ¼
iw

2pJ00ðkriÞ
ðCeikri � Be�ikriÞ; (12)

An ¼
i

pJ0nðkriÞ
ðCeikri � Be�ikriÞ

sin
nw
2

� �
n

; (13)

where n � 1 and A�n ¼ An. Second, pressure, pi, averaged

over the opening, i.e., �pi ¼ ð1=wÞ
Ð w=2

�w=2
piðr ¼ ri; hÞ dh should

be equal to that on the slit inner surface. From Eqs. (7), (12),

and (13)

�pi¼ðCeikri�Be�ikriÞ

� iw
2p

J0ðkriÞ
J00ðkriÞ

þ 4i

pw

X1
n¼1

JnðkriÞ
J0nðkriÞ

sin2 nw
2

� �
n2

0
B@

1
CA: (14)

This has to satisfy the following condition:

�pi ¼ Ceikri þ Be�ikri : (15)

Finally, at the outer surface of the opening at r ¼ re ¼ ri

þH, the ratio of ph and vh is equal to the slit radiation

impedance, �z,

q0c
Ceikre þ Be�ikre

Ceikre � Be�ikre
¼ �z: (16)

Combining this with Eqs. (14) and (15) and leaving only the

leading terms in the expansion of tanðkHÞ, the following

characteristic equation is obtained:

�z

q0c
¼ Qþ iðkHÞ

iQðkHÞ þ 1
; (17)

where

Q ¼ iw
2p

J0ðkriÞ
J00ðkriÞ

þ 4i

pw

X1
n¼1

JnðkriÞ
J0nðkriÞ

sin2 nw
2

� �
n2

: (18)

Resonance frequencies of a SR resonator are the solutions of

characteristic Eq. (17) and, hence, depend on the radiation

impedance of the opening. Now, assuming kri ¼ OðbÞ,
kH ¼ Oðb2Þ, d=H ¼ Oð1Þ (end correction d is defined

below), where b is a small parameter, and leaving only the

leading terms in the expansions in Eqs. (17) and (18),

J0ðkriÞ
J00ðkriÞ

¼ � 2

kri
þOðbÞ; JnðkriÞ

J0nðkriÞ
¼ kri

n
þOðb3Þ; (19)

the following equation can be obtained for the resonance

frequency, fr, of the SR resonator

�Z ¼ � �ie

pkrr2
i

þ ikrðH þ dÞ; (20)

where kr ¼ 2pfr=c, �Z ¼ �z=q0c is the normalized radiation

impedance of the slit, and the inner end correction, d, is

d ¼ e
4

pw2

X1
n¼1

sin2 nw
2

� �
n3

: (21)

Radiation impedance of the slit, �Z , depends on the resonator

surroundings. In the simplest case when the resonator is

placed in an unbounded homogeneous medium (free field), it

can be calculated in the following way. Piston motion approxi-

mation (9), (10) assumes that particle velocity on the outer slit

surface is angle independent and is equal to v0 ¼ vhðr ¼ reÞ.
According to Shenderov,11 pressure at the point with coordi-

nates ðr; hÞ (coordinate system is centered at the cylinder)

generated by an arbitrary velocity distribution, vðhÞ, on the

surface of a cylinder with radius, re, can be calculated as

pðr; hÞ ¼ � ixq0

4p

ð2p

0

vðh0ÞGðr; re; h; h0Þ dh0; (22)

TABLE II. Dimensions for the configuration C1. These geometric values

are defined Fig. 1.

C1 ri ðcmÞ re ðcmÞ d ðcmÞ e ðcmÞ h ðcmÞ l ðcmÞ

0.7 0.744 2 0.14 2 1

3



where

Gðr; re; h; h0Þ ¼ �
2

kre

X1
n¼�1

Hð1Þn ðkrÞ
H
ð1Þ0
n ðkreÞ

einðh�h0Þ (23)

is the Green’s function of a cylinder in a free field chosen so

that @G=@r ¼ 0 on the cylinder surface and Hð1Þn is the

Hankel function of the first kind. As the velocity is uniformly

distributed over the slit and zero everywhere else on the SR

surface, the ratio of pressure [Eq. (22)] averaged over the slit

to the velocity, v0, gives the following expression for the nor-

malized radiation impedance �Z ¼ ð
Ð w=2

�w=2
pðre; hÞ dhÞ=wv0q0c:

�Z ¼ 2i

pw
w2

4

H
ð1Þ
0 ðkreÞ

H
ð1Þ0
0 ðkreÞ

þ 2
X1
n¼1

Hð1Þn ðkreÞ
H
ð1Þ0
n ðkreÞ

sin2 nw
2

� �
n2

0
B@

1
CA:
(24)

As before, a small resonator with kre ¼ OðbÞ, w=2p ¼ Oðb2Þ
is considered. So leaving only the leading order terms in the

following expansions:

H
ð1Þ
0 ðkreÞ

H
ð1Þ
0
0ðkreÞ

¼ Oðb logðbÞÞ; Hð1Þn ðkreÞ
H
ð1Þ
n
0ðkreÞ

¼ � kre

n
þOðb3Þ:

(25)

Equation (24) is reduced to

�Z ¼ �ikd; (26)

where d is defined by Eq. (21). This means that for a small

resonator in the free field, the outer end correction is equal to

the inner one. Substitution of Eq. (26) in characteristic equa-

tion (20) leads to the following expression for the resonance

frequency of SR in air:

fr ¼
krc

2p
¼ c

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

pr2
i ðH þ 2dÞ

r
: (27)

B. Resonance frequency of a split ring in the presence
of a rigid boundary

The presence of a rigid boundary close to the SR

changes the radiation impedance, �Z , of its slit and so affects

the resonance frequency. To derive the radiation impedance,

consider a SR placed at a distance, L, from the rigid bound-

ary. The slit orientation relative to the wall is described by

angle / ¼ p� afng, where angle afng is shown in Fig. 1. The

positions of the SR and its image relative to the rigid bound-

ary are shown in Fig. 2.

The pressure field outside the SR and its image is

p ¼
X1

n¼�1
anHð1Þn ðkrÞeinh þ

X1
n¼�1

anHð1Þn ðkr0Þeinh0 ; (28)

show that normal derivative of p defined by Eq. (28) is zero

at the wall. Applying Graf’s addition theorem,12 Eq. (28) is

transformed to

p ¼
X1

n¼�1
anHð1Þn ðkrÞ þ JnðkrÞ

X1
m¼�1

amH
ð1Þ
mþnð2kLÞ

" #
einh:

(29)

The radial component of the particle velocity is

vr ¼
1

iq0c

X1
n¼�1

"
anHð1Þn

0ðkrÞ

þ J0nðkrÞ
X1

m¼�1
amH

ð1Þ
mþnð2kLÞ

#
einh: (30)

The pressure averaged over the opening r ¼ re, /þ w=2 �
h � /� w=2 is

�p¼
X1

n¼�1
anHð1Þn ðkrÞþJnðkrÞ

X1
m¼�1

amH
ð1Þ
mþnð2kLÞ

" #
qðnÞ;

(31)

where

qðnÞ ¼
sin

nw
2

� �
nw
2

; n 6¼ 0; (32)

and

qð0Þ ¼ 1: (33)

A uniform velocity, v0, at the slit surface is assumed as

before and the following boundary condition for vr is applied

on the surface of the SR:

vrðr ¼ re; hÞ ¼ v0ðHðh�/þw=2Þ �Hðh�/�w=2ÞÞ;
(34)

FIG. 2. Split ring resonator placed against the rigid boundary and its image.

where ðr, hÞ are polar coordinates of the observation point in 
the coordinate system centered at the SR, while ðr0, h0Þ are 
coordinates in the system centered at its image. It is easy to
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which is similar to Eq. (11). Using orthogonality conditions,

the following infinite system of equations for coefficients

bn ¼ ein/anHð1Þn
0ðkreÞ=ðiq0cv0Þ is derived:

bnþ J0nðkreÞ
X1

m¼�1
bmeiðn�mÞ/ H

ð1Þ
mþnð2kLÞ

H
ð1Þ
m
0ðkreÞ

¼ wqðnÞ
2p

: (35)

In terms of coefficients bn, the normalized radiation imped-

ance of the slit in the presence of wall, �Zw, is expressed as

�Zw¼ i
X1

n¼�1
bn

Hð1Þn ðkreÞ
H
ð1Þ0
n ðkreÞ

"

þJnðkreÞ
X1

m¼�1
bmeiðn�mÞ/ H

ð1Þ
mþnð2kLÞ

H
ð1Þ0
m ðkreÞ

#
qðnÞ: (36)

The next step is to use Bessel and Hankel function expan-

sions in Eqs. (35) and (36) assuming kre ¼ OðbÞ and

2kL ¼ OðbÞ and leaving only the leading terms. In addition

to Eq. (25), the following expansions have been used

(m; n 6¼ 0):

J0ðkreÞ ¼ 1þ Oðb2Þ; (37)

J00ðkreÞ ¼ �
kre

2
þ Oðb3Þ; (38)

JnðkreÞ ¼
ðkreÞn

2nn!
þ Oðbnþ2Þ; (39)

J0nðkreÞ ¼
ðkreÞn�1

2nðn� 1Þ!þ Oðbnþ1Þ; (40)

Hð1Þn ð2kLÞ
H
ð1Þ
m
0ðkreÞ

¼�2n�m ðn�1Þ!
m!

ðkreÞmþ1

ð2kLÞn þOðbm�nþ3Þ; (41)

Hð1Þn ð2kLÞ
H
ð1Þ
0
0ðkreÞ

¼ �2n�1 ðn� 1Þ!kre

ð2kLÞn þ Oðb3�n logðbÞÞ; (42)

H
ð1Þ
0 ð2kLÞ

H
ð1Þ
n
0ðkreÞ

¼ Oðbnþ1 logðbÞÞ: (43)

After tedious but simple algebra, radiation impedance,
�Zw, takes the following form:

�Zw ¼ �ikdw; (44)

where the outer end correction in the presence of wall dw is

dw¼
e

w

X1
n¼1

wqðnÞyn cosðn/Þ
4n

þbn
2e�in/ynþqðnÞ

2n

�

þSmn
qðnÞ

n

�
þc:c:; (45)

where

Smn ¼
X1

m¼1;m6¼n

bm
ðmþ n� 1Þ!
m!ðn� 1Þ! ymþneiðn�mÞ/: (46)

Here, y ¼ re=2L. The equations for coefficients bn, where

n � 1 are

bn 1� y2n ð2n� 1Þ!
n!ðn� 1Þ!

� �
� Smn ¼

w
�

2qðnÞ þ ynein/
�

4p
:

(47)

To numerically compute dw, Eqs. (45)–(47) have to be trun-

cated. Substituting radiation impedance defined by Eq. (44)

in characteristic equation (20) leads to the following expres-

sion for the resonance frequency of a SR in air in the

presence of a wall:

fw ¼
c

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

pr2
i ðH þ dþ dwÞ

r
: (48)

The end correction defined by Eq. (45) is longer than the

free field value, d, if the slit is facing the wall. This means

that the resonance frequency of a SR is lower in this case

compared to that of a SR in the free field. For instance, the

resonance frequency of C1 in a free field predicted by

Eq. (27) is 2913 Hz (FEM calculations result in 2970 Hz).

When the resonator is placed L ¼ 0:01 m away from the

wall so that the opening is facing it (/ ¼ 0), using Eq. (48)

the resonance frequency 2475 Hz is calculated (FEM result

is 2650 Hz). However, the resonance frequency is increased

as the slit is turned away from the wall for / ¼ p=2,

fw ¼ 2917 Hz (FEM result 2921 Hz) and for / ¼ p,

fw ¼ 3136 Hz (FEM result 3050 Hz). It has to be noted that

in this case at 3000 Hz, kre � 0:41, however, 2Lk � 1:1, so

the assumptions that these values are much less than unity,

used in derivations, are not strictly valid. However, the trend

predicted by the model is correct and the resonance frequen-

cies differ by less than 10% from those computed

numerically.

C. Resonance frequency of a split ring in porous
matrix

When a SR is embedded in porous material, its resonance

frequency becomes dependent on the material properties. The

slit radiation impedance is represented as �Z ¼ �ikrd
0, where

d0 ¼ d or d0 ¼ dw depending on whether the rigid boundary is

present or not, and the characteristic equation (20) is rewritten

as

kr
2 ¼ x

e

pri
2ðH þ dþ d0Þ : (49)

However, in a porous material, kr is expressed as

kr ¼ x
ffiffiffiffiffi
q1

v1

r
; (50)

where the effective density and the bulk modulus are defined

by Eqs. (1) and (3). In Fireflex (Recticel, Belgium), the char-

acteristic frequencies involved in these equations take the

following values: �b ¼ 781 Hz, �c ¼ 2049 Hz, �0b ¼ 298

Hz, �0c ¼ 846 Hz. Let us assume that the resonance
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frequency of a SR is significantly higher than �0c. In this

case, the effective bulk modulus is close to its adiabatic

value and

k2
r � a1

x2
r

c2
1þ 2p�b

�ixr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�ixr

2p�c

r !
; (51)

where c is the sound speed in air, xr ¼ 2pfr, and fr is reso-

nance frequency. Combining this with Eq. (49) gives the fol-

lowing equation for W ¼ xr=ð2p�cÞ:

W2 þ i
�b

�c
W

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W
p

¼
�K

2p�c

� �2

; (52)

where

�K ¼ cffiffiffiffiffiffi
a1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

pr2
i ðH þ dþ d0Þ

r
: (53)

For Fireflex (Recticel, Belgium), �b=�c � 1, so Eq. (52) can

be solved approximately using the method of small

perturbations. After simple transformations, this gives the

following expression for the resonance frequency, fr:

fr �
1

2p
�K � i2p�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

�K

2p�c

s0
@

1
A: (54)

The resonance frequency is complex due to the presence of

viscous losses in the porous material. Its real part is

ReðfrÞ�
1

2p
�K�2p�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�K

2p�c

� �2
s

�1

2

vuuuut
0
BBB@

1
CCCA
: (55)

For a resonator embedded in an unbounded Fireflex

(Recticel, Belgium) matrix ReðfrÞ � 1721 Hz, which is sig-

nificantly lower than its resonance frequency in air.

D. Scattering by a split ring at low frequencies

To calculate SR scattering coefficients, the low fre-

quency model developed in Krynkin et al.10 is used. It

implies that a SR resonator is replaced by a layered cylinder

with porous matrix inside, surrounded by a layer (thickness,

H) of an effective fluid. The latter has the following charac-

teristic impedance and wavenumber [normalized by the

characteristic impedance z ¼ ffiffiffiffiffiffiffiffiffi
q1v1

p
and the wavenumber of

the porous material; Eq. (50)]:

Zl ¼
2pri

e
; kl ¼ 1þ dþ dw

H
: (56)

IV. PARAMETRICAL STUDY

The aim of this section is to investigate the influence of

the embedded scatterer geometry on the porous layer absorp-

tion coefficient numerically and to compare the results with

the scattering model described in the Sec. III. The focus is

on two particular types of inclusions: the rigid cylinder and

the SR.13–15 With SRs embedded in porous matrix, three

types of phenomena can be noticed. The former two are sim-

ilar to those observed for the rigid inclusions. The acoustic

energy is still trapped between the inclusions and the rigid

backing. Bragg’s interference is also noticeable at higher

frequencies. The third phenomenon is the SR resonance that

enhances the absorption coefficient by trapping the sound

energy inside the scatterer.

A. Influence of the slit orientation

As shown in Sec. III B the slit orientation angle, afng,
influences the SR resonance frequency. This will be con-

firmed numerically and the influence on the trapped mode

frequency will be investigated. Simulations are performed

by changing the orientation of the slit relative to the wall,

afng ¼ ½0; p=6; p=3; p=2; 2p=3; 5p=6; p�, and searching for

frequencies at which the resonance of the SR and the mode

trapping occur. These frequencies are determined by the

structure of the acoustic field given by the FEM result;

the SR resonance corresponds to a maximum of the pressure

field located inside the resonator, while at the trapped mode

frequency the pressure maximum is mostly located between

the inclusions and the rigid backing. Both correspond to an

enhancement of the absorption coefficient [Fig. 4(b)]. The

results for the SR are shown in Fig. 3, where the frequencies

of inclusion resonance (solid line with stars for FEM and

dots for semi-analytical results) and the resonances of the

layer (dashed line for the rigid inclusion and solid line of the

resonant inclusion) are plotted against afng.
The position of the absorption coefficient peak associ-

ated with the SR resonance is strongly angle dependent

FIG. 3. Influence of SR opening orientation relative to rigid boundary on its

resonance frequency in Fireflex (Recticel, Belgium). Numerical simulations

are performed for hi ¼ 0. Dimensions of configuration C1 (see Table II).

The outer radius of the cylinder remains the same as that of

the SR. In the calculations the SRs were placed close to a

rigid boundary; for this reason, the end correction, dw, 
appears in the equation for kl. The scattering coefficients of a
multi-layered cylinder are then used in the scattering model

developed by Groby et al.2
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when afng exceeds p=2. The resonance frequency of the

SR decreases and the minimum frequency is reached for

afng ¼ p as expected. The frequency of the trapped mode

(which corresponds to a higher frequency peak of the

absorption coefficient) increases with afng. When afng is less

than p=2, the acoustic field trapped between the rigid back-

ing and the inclusion is uniformly distributed along the axis,

x1 [see Fig. 4(a)]. When afng exceeds p=2, the resonator

introduces a periodical pressure field anomaly [see Fig.

4(b)]. With afng ¼ p, the effect of this anomaly is maximum.

The acoustic field is still trapped between the rigid backing

and the inclusions, but the spatial distribution pattern has

changed. In other words, when afng 	 0 the trapped mode

and the SR mode are coupled leading to a single absorption

peak, then decoupled when afng increases, possibly leading

to the appearance of two absorption peaks.

The semi-analytical model predictions for the position

of the lower frequency peak dependence on the slit orienta-

tion are in satisfactory agreement with the numerical results

(Fig. 5). However, due to the low frequency nature of the

model, it is unable to correctly predict the absorption coeffi-

cient behavior at higher frequencies.

The results of simulations imply that properties of the

porous layer with embedded SRs could be tuned by simply

changing slits orientation relative to the rigid backing. This

makes the structure potentially effective for treatment of nar-

row frequency band noise. All the results presented so far

have been obtained for a plane wave incident normally to

the layer surface, i.e., hi ¼ 0. It is known that for a 2D sonic

crystal, the absorption coefficient depends on the incidence

angle because the wave does not encounter the same perio-

dicity pattern and, hence, is not scattered in the same way

for different angles.16 A similar behavior can be expected

for the structure with embedded SRs. The results of simula-

tions (see Fig. 6) show that the absorption due to the SR res-

onance is not strongly influenced by the angle of incidence

because the resonance frequency is independent on the way

the resonator is excited. On the other hand, the trapped mode

frequency and the absorption peak due to this mode increase

slowly with hi. This phenomenon has been already observed

for other types of scatterers, for instance, rigid square inclu-

sions.17 The trapped mode is dependent on the distance, L,

between the inclusion and the rigid backing.2 The frequency

of this mode increases as L decreases. When the incident

wave strikes the material at an angle, hi, the projection of the

distance, L, on the wave vector direction is Lhi ¼ L cos hi.

When hi > 0, the distance Lhi is less than L which leads to

the frequency increase.

FIG. 4. (Color online) Frequency de-

pendence of the absorption coefficient

for two different orientations of the SR

opening. Insets show pressure distribu-

tions near the frequency of the SR res-

onance (a) and the modified layer

resonance (b). Dimensions of configu-

ration C1 (see Table I).

FIG. 5. Comparison between FEM and

semi-analytical results for the absorp-

tion coefficient of Fireflex (Recticel,

Belgium) layer with SR inclusions

having slits positioned at two different

angles, afng. Dimensions of configura-

tion C1 (see Table I).
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B. Creation of a “supercell” by varying the inclusion
orientation

It has been shown above that the orientation of the

inclusions can offer a tunability. This leads to the design of a

“supercell” composed of several inclusions oriented at dif-

ferent angles, afng. This could widen the frequency band

where high values of the absorption coefficient are achieved.

Different configurations are possible, but here the focus is on

a “supercell” made with two SRs.

The distance between the two inclusions is kept equal to

2 cm, but the periodicity of the structure is now d ¼ 4 cm.

The external radius is re ¼ 0:74 cm. Although the positions

of the SRs are the same as before, they are not oriented in the

same way relative to the rigid boundary. This changes the

periodicity of the anomaly and leads to different modes for

the rigid backing entrapment. The cell in configuration (1)

contains a single rigid inclusion (see Fig. 7). For this configu-

ration only, the trapped mode and the Bragg’s interference

are noticeable in the considered frequency range.

Comparison of the absorption coefficient for this configura-

tion with that of a “supercell” emphasizes the advantages

of the resonant inclusions. The simulations have been also

performed for a “supercell” composed of four inclusions

oriented with afng ¼ ½p=2; 2p=3; 5p=6; p�. However, in this

case, the resonance frequencies are too close to each other

resulting in a narrow frequency band of high absorption at

1500 Hz and another maximum of absorption at 4000 Hz due

to the trapped mode. The configuration (2) is efficient for

sound absorption in a frequency range between 1500 Hz and

3500 Hz, where the absorption coefficient value reaches 0.9.

The resonances of each inclusion and the trapped mode are

close enough to excite some coupled modes and to keep a

large absorption coefficient value in a wide frequency band.

This means that absorption coefficient value as high as 0.9

can be achieved for wavelengths ten times larger than the

structure thickness, conferring the status of a metamaterial

for this structure.

V. EXPERIMENTAL VALIDATION

Measurements have been performed to validate the nu-

merical and semi-analytical models. The sample tested is

composed of melamine foam as the porous matrix and

hollow aluminum cylinders with and without slits as rigid

inclusions (Fig. 8). Parameters of the inclusions used in

measurements are summarized in Table III. The absorption

coefficient of the sample is measured in an impedance tube

with a square cross section with a side length 4.2 cm. The

tube cut-off frequency is 4200 Hz. By assuming that plane

waves propagate below the cut-off frequency, the infinitely

rigid boundary conditions of the tube act like perfect mirrors

and create a periodicity pattern in the x1 and x3 directions

with a periodicity of 4.2 cm. This technique was previously

used in the article by Groby et al.18 and allows to determine

experimentally the absorption coefficient of a quasi-infinite

2D periodic structure just with one unit cell. Two aluminum

cylinders were inserted in the porous matrix to have two unit

FIG. 8. (Color online) Picture of one of the characterized samples:

“supercell” of two SRs with one of them taken out.

FIG. 6. Dependence of the absorption coefficient for a layer of Fireflex

(Recticel, Belgium) with SR inclusions on the angle of incidence, afng ¼ p.

Dimensions of the configuration C1 (see Table I).

FIG. 7. (Color online) Comparison between absorption coefficients of

Fireflex (Recticel, Belgium) layer with SR inclusions arranged in a

“supercell” and with rigid inclusions. Normal incidence plane wave.

Dimensions of configuration C1 (see Table I).
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cells of 2.1 cm side length in one sample. The parameters of

the melamine foam are slightly different from those of

Fireflex (Recticel, Belgium) and are summarized in Table

IV. The sample is placed at the end of the tube against a cop-

per plug that closes the tube and acts as a rigid boundary.

First, the FEM results are validated by comparing its

results with the experimental data and the analytical model2

predictions for a sample with rigid inclusions embedded in

the porous matrix (see Fig. 9). This analytical model is based

on the use of multipole method. FEM results are clearly in

agreement with the analytical model and the experiments,

showing a well-defined maximum of absorption coefficient

in both cases. The lower frequency values of the absorption

coefficient given by the FEM do not match the data exactly.

The reason for this is most likely due to the defects of the

real sample and of its positioning in the tube (misalignment

of the inclusions with the sample faces, uncertainties on the

foam parameters, uncertainties on the placement of the sam-

ple in the tube, boundaries conditions between the porous

and the tube,…). The inclusions are hollow aluminum cylin-

ders. A first measurement is made (not shown in this article)

with empty inclusions where the absorption coefficient is

even higher in the low frequency range. A small leak at the

upper and lower boundaries of the sample allows interac-

tions between the incident wave and the inside of the inclu-

sion that increase the absorption coefficient. A measurement

is also performed using inclusions filled with Plasticine. The

experimental absorption coefficient estimation is then closer

to the prediction, but is still relatively larger than the FEM

value in the low frequency range. This might be due to

the Plasticine that cannot be considered perfectly rigid.

Measurement of the 2.1 cm thick foam, without inclusions,

is also performed showing a perfect agreement with the

model. These measurements are not shown here for the sake

of clarity.

This problem disappears in the next experiments where

the rigid inclusions are replaced by the SRs (see Figs. 10 and

11). In both experiments, the same porous matrix is used.

The material inside the SRs is melamine foam, extracted

when the inclusions were inserted for the first time. When

afng ¼ 0 (Fig. 10), the FEM fits perfectly to the experimental

results, whereas the semi-analytical calculation captures well

the tendency with an overestimation of the curve between

1300 Hz and 3000 Hz. When afng ¼ p (Fig. 11), for both nu-

merical and semi-analytical calculations, the low frequency

behavior of the absorption coefficient is in agreement with

experimental results whereas the higher frequency behavior

is less well-captured. This can be due to a misplacement of

the sample in the impedance tube that changes the spacial

periodicity and so changes the experimental frequency and

efficiency of the trapped mode.

By comparison with Fig. 9, the enhancement of the

absorption coefficient due to SRs is clearly noticeable

with its maximum appearing at f 	 3000 Hz for the rigid

inclusions, f 	 2500 Hz for the SRs with afng ¼ 0, and

f 	 2000 Hz for the SRs with afng ¼ p.

A final experiment confirms the efficiency of the

“supercell” described in Sec. IV B (see Fig. 12, where one of

the inclusions is oriented with afng ¼ 0 and the other with

afng ¼ p). The experiment and the simulations are in a good

agreement. This proves the possibility of the efficient

absorption of frequencies with wavelength in air 8.5 times

larger than the structure thickness. The comparison with the

absorption coefficient of foam with no inclusions (solid line

with cross) demonstrates that even for frequencies around

500 Hz, the absorption coefficient is increased from 0.15 to

0.2, which represents 30% of improvement, and for 2000 Hz,

TABLE III. Characteristic dimensions of the sample used in the experi-

ments. These geometric values are defined Fig. 1.

C2 ri ðcmÞ re ðcmÞ d ðcmÞ e ðcmÞ h ðcmÞ l ðcmÞ

0.65 0.7 4.2 0.15 2.1 1.15

TABLE IV. Parameters of the porous foam (melamine) used in experiments

where / is the porosity, a1 is the tortuosity, K and K0 are the characteristic

viscous and thermal lengths, respectively, and r is the material flow resistivity.

/ a1 K ðlmÞ K0 ðlmÞ r ðN s m�4Þ

0.99 1.02 160 220 11000

FIG. 9. Comparison between experimental and numerical results for the

absorption coefficient of melamine layer with rigid inclusions, configuration

C2. Dimensions of the sample are given in Table III.

FIG. 10. Comparison between experimental and numerical results for the

absorption coefficient for a sample composed of SR inclusions in a mela-

mine layer with afng ¼ 0. Dimensions of the sample are given in Table III.
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the improvement is maximum with the absorption coefficient

value increased from 0.5 to 0.9.

VI. CONCLUSION

The influence of the periodically arranged inclusions on

the absorption coefficient of a rigidly backed porous layer

was studied theoretically, numerically, and experimentally.

In addition to the absorption features related to excitation of

modified layer modes and to Bragg’s interference, the struc-

ture possesses a quasi-total (close to unity) absorption peak

below the quarter-wavelength resonance frequency. This

occurs when one row of rigid cylindrical inclusions is em-

bedded in a porous layer whose thickness and material prop-

erties, mainly the static flow resistivity, are correctly chosen.

This particular feature enables the design of the compact

sound absorbing packages and is explained by a complex

trapped mode excitation, which leads to an increase of pres-

sure gradient inside the porous layer. When resonant inclu-

sions are embedded in the porous layer, the low frequency

behavior of the absorption coefficient can be significantly

changed. Near the inclusion resonance frequency, a quasi-

total absorption peak occurs. For the SR inclusions in

Fireflex (Recticel, Belgium) foam, the frequency of this peak

corresponds to the wavelength nearly ten times larger than

the layer thickness. This suggests that the structure can be

considered as an acoustic metamaterial of a special type.

The resonance frequency of the inclusions depends on the

orientation of slits relative to the rigid boundary (described

by angle afng). The proximity of the rigid backing and the

slit leads to an increase of the end correction (extended

resonator neck). This phenomenon offers a possibility of a

tunable absorber, which can be efficient in a wide range of

frequencies. In case of more than one inclusion per spatial

period, the quasi-total absorption in a wider frequency range

can be obtained when the slits of the neighboring inclusions

have different orientations relative to the backing. However,

the characteristic dimensions of the inclusions and the layer

have to be carefully chosen to make the excitation of the

coupled modes possible in order to achieve high absorption

coefficient values. The predictions of a semi-analytical scat-

tering model described in this article are in satisfactory

agreement with the numerical results at low frequencies

(below and close to resonances). However, the model needs

to be extended if the accurate predictions for higher frequen-

cies are required. In conclusion, embedding resonant inclu-

sions in a porous layer offers an alternative to multi-layering

and double porosity materials in the design of sound absorp-

tion packages for low frequency applications.
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