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Summary
This paper proposes a Component Mode Synthesis technique for the resolution of problems involving coupled substructures including 
porous materials. This technique is based on normal modes. A modal subfamily is se-lected for each substructure. Attachment modes 
are added in order to take into account the influence of non preserved modes. These attachment modes concern both the interface 
between substructures through interaction forces as well as the external excitation on substructures. A simple criterion based on the 
evaluation of a residual vector is proposed and allows an automatic selection of the number of preserved modes.
The method is compared to an analytical model in the case of two 1D configurations. The ability of the method to handle coupled 
systems is shown. The proposed approach perfectly matches with the analytical solution.

1. Introduction

1.1. Context

Porous materials are heterogeneous media made up of a
porous elastic skeleton saturated by a fluid. Assembled
structures including porous materials are commonly used
in many engineering applications in order to dissipate
acoustical or mechanical energy (sound absorption, sound
insulation, damping) [1, 2, 3]. In these structures, damp-
ing is often due to the inner dissipation mechanisms of
the porous material and the optimization of noise control
solutions based on the use of such materials requires the
development of robust predicting tools.

The dynamical behaviour of porous structures is clas-
sically obtained from homogenized models and particu-
larly Biot-Allard’s theory [4, 5, 6, 1] which is based on
continuous fields mechanics approach. The homogenized
porous media is modeled as the superposition of two con-
tinuous fields whose inertial and constitutive coefficients
are given by phenomenological relations. In many indus-
trial and physical cases, the response of an aggregate struc-
ture including porous media to external forces cannot be

obtained analytically and it is necessary to use numeri-
cal methods to solve the problem. Finite element method
is then often used to discretize the poroelastic variational
formulation [7, 8, 9, 10, 11, 12, 13]. All of these formu-
lations consider the solid displacement us as unknown of
the problem and they differ by the choice of the second
field. Some of them [7, 8, 9, 10, 13] (also called displace-
ment formulations) consider an other displacement (fluid,
relative flow, total displacement) thereby leading to a 6
degrees of freedom (dof ) problem; other ones [11, 12]
(called mixed formulations) propose to use the interstitial
pressure P and correspond to a 4 dof per node problem.
However, these numerical models lead to large size linear
systems (frequency dependent and complex valued). The
development of adapted techniques which can reduce the
computational cost of the problem to be solved is then of
the utmost importance. Different solutions have still been
investigated [14, 15, 16] based on the improvement of the
finite element discretization or the use of specific assump-
tions.

Another way to reduce the complexity of the models
is to develop a Component Mode Synthesis (CMS) tech-
nique [17, 18, 19, 20] for structures involving porous ma-
terials. The CMS technique consists in dividing an aggre-
gate structure into substructures on which a modal anal-
ysis technique is individually performed. The first modes
of each substructure are only considered and attachment
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modes associated to the static response of the non pre-
served modes are added to obtain a global modal basis
of the whole structure. Many reviews on the subject have
been undertaken [17, 18, 19, 20, 21, 22, 23] and the reader
can refer to them.

CMS techniques where mainly used for solid and fluid
structures but their application to porous material is more
recent [24, 25, 26] and only devoted to the case of single
porous structure. Sgard et al. [26] proposed a decoupled
modal analysis for mixed formulations which appears lim-
ited for three dimensional problems and never applied to
coupled systems. Dazel et al. [24, 25] proposed a gener-
alized complex modes technique for poroelastic problems
for {us, P} problems. More recently the authors present
a new displacement formulation [27] (called total formu-
lation or {us,ut} formulation) and resolution techniques
based on normal modes. The difference between these last
two approaches first lies in the simplicity to compute the
eigenmodes of the problem: the first technique was based
on an extended space and complex modes as the second
one is based on normal modes, easier to compute for a
non-specialist.

The purpose of this paper is to propose a free interface
CMS technique based on normal modes to calculate the
forced response of structures involving porous materials.
This technique is based on classical concept of substruc-
turing techniques but the originality is to apply it to the
case of frequency dependent problems. Normal modes as-
sociated based on the discretized spatial operators of each
phase are first computed so as to avoid frequency depen-
dent coefficients. As a selection of them is not sufficient
to approximate the solution of the problem, attachment
modes are added. Some of them are associated to junction
degrees of freedom and others are associated to the excita-
tion (also considered in references [21, 22]). Modal shapes
are multiplied and combined at each frequency to take into
account for frequency dependent coefficients. A second
originality of this paper is to propose an automatic selec-
tion procedure. It is then successfully applied to monodi-
mensional problems.

Section 2 presents the CMS technique of interest. The
technique is then applied to a porous-porous (resp. porous-
air) multilayered problem in section 3 (resp. 4). Section 5
concludes the paper.

2. Theoretical part

2.1. Discrete nodal problem

The structure of interest is composed of only 2 substruc-
tures. In all the paper and so as to simplify reading of
the manuscript, notations relative to the second substruc-
ture correspond to the primed of the ones of the first sub-
structure; they thereby won’t be defined explicitly. If more
than 2 substructures are involved, generalization of this
methodology can be proceeded. The discrete problem in
the frequency domain can be written in the form




[A] [0] [λ]
[0] [A ] [λ ]
[λ]t [λ ]t [0]






u
u
f



 =




F
F
0



 . (1)

u is the discretized field vector (or physical coordinates
vector) of length n, [A] is the discrete matrix of the first
substructure and F is the external force acting on the first
substructure. In equation (1), Lagrange multipliers are in-
volved to ensure continuity relations (force and displace-
ment) at the interface between the two substructures. The
number of these relations correspond to the number of de-
grees of freedom at the interface and is denoted by nj . This
number is rather small compared to n and n . f is an addi-
tional unknown vector of length nj associated to the cou-
pling conditions and −[λ][f] can be interpreted as the force
from substructure 2 on substructure 1.

2.2. Modal representation

This paragraph presents the formal modal decomposition
of substructure 1. The discrete modal decomposition in the
frequency domain of the response u(E, ω) to an excitation
E can be written in the following form:

u(E, ω) =
m

i=1

Φiqi(E, ω)

S(E,ω)

+
n

i=m+1

Φiqi(E, ω)

H(E,ω)

. (2)

Φi (i = 1..n) are the eigenmodes and qi (i = 1..n) are the
modal coordinates. From a purely mathematical point of
view, there is equivalence between the problem in physi-
cal or modal coordinates as far as the modal basis [Φ] =
[Φi]i (i=1..n) is complete. In most cases, these modes are the
first one (i.e. the one with the lowest eigen-frequencies).
The other modes only contribute through their flexibility.

Excitation force E on substructure 1 is the sum of the
two following terms: F is associated to known external ex-
citation and F̂ to interaction forces with substructure 2.
This second force has nj non-null components. Let ξ be
the vector of length nj of the unknown forces at the inter-
face. One has

F̂ = 1j ξ, (3)

with [1j] the n × nj matrix in which 1j corresponds to
a boolean vector of length n in which the only non null
value is associated to dof j of the interface. One then ob-
tains nj + 1 additional modes (called attachment modes);
nj of them (denoted by H(1j, 0)) are associated with the
interface and one (denoted by H(F, 0)) associated to the
external excitation.

The discrete displacement field can then be approxi-
mated by

u(E, ω) ≈
m

i=1

Φiqi +H(F, 0)qF + H(1j, 0) ξ. (4)

qF is the unknown contribution of the attachment mode
associated to the excitation. Note that this contribution is
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equal to 1 at zero frequency. [Φ] corresponds to the matrix
of the first m modes of substructure 1. Attachment mode
associated to the force H(F, 0) is added to the modal fam-
ily. q is the m + 1 unknown vector of contributions of the
modes.

2.3. General modal resolution procedure

Problem (1) can be rewritten in the following form:



[A] [0]
[0] [A ]
[λ]t [λ ]t


 u

u =




F + F̂
F + F̂
0



 ,

F̂ = −[λ][f], F̂ = −[λ ][f]. (5)

F̂ and F̂ are the interaction forces between the substruc-
tures and have non null values only at the degree of free-
dom corresponding to the interface (and although they are
in the right hand side of equation (5), they remain un-
knowns of the problem).

As interaction forces are unknowns of the problem,
elimination should be done. Continuities of displacements
corresponds to the last row-block of problem (5) and one
has

Φ
b
|Hb(F, 0) q + Hb(1j, 0) ξ

+ Φ
b
|Hb(F , 0) q + Hb(1j, 0) ξ = 0, (6)

with

Hb(1j, 0) = λ
t H(1j, 0)

Φ
b

= λ
t
Φ , Hb(F, 0) = λ

tH(F, 0). (7)

Interaction force vector ξ is then solution of the problem

Hb(1j, 0) − Hb(1j, 0)

[Rb]

ξ

= Φ
b
|Hb(F, 0) q + Φ

b
|Hb(F , 0) q . (8)

[Rb] is a nj × nj matrix which can be inverted to express
ξ as a function of the modal contributions. The nodal dis-
placements are finally given by

u
u ≈ Ψ

q
q , (9)

with

Ψ =
[Φ|H(F, 0)] [0]

[0] [Φ |H (F , 0)]

+
H(1j, 0) Rb

−1
Φ

b
|Hb(F, 0)

− H (1j, 0) Rb
−1

Φ
b
|Hb(F, 0)

(10)

H(1j, 0) Rb
−1

Φ
b
|Hb(F , 0)

− H (1j, 0) Rb
−1

Φ
b
|Hb(F , 0)

.

For any contributions q and q , the methodology ensures
the continuity relations on displacement and force for the

unknown nodal vector in (9). The projection of problem
(1) in which Lagrange multipliers, now useless, are omit-
ted on the [Ψ] family leads to a reduced problem.

This technique is called FICMT (Force Interface Cor-
rected Modal Technique). In order to evaluate its accuracy,
it is compared to methods of the literature. If attachment
modes H(F, 0) are not considered, only the correction at
the interface is taken into account; it corresponds to Craig
and Chang technique [17, 18] and this technique is denoted
ICMT (Interface Corrected Modal Technique). If no cor-
rection is considered (Direct Modal Technique or DMT),
problem (1) is projected on the matrix of free-modes ag-
gregated with an identity matrix for Lagrange multipliers.

2.4. Automatic selection of the modes

One key point of modal techniques is to find the adequate
number of modes in the selection of each modal basis.
Some empirical criterion are often used (as for example
to preserve modes with eigenfrequencies lower to twice
the frequency of excitation). In this section an automatic
selection procedure is proposed. The idea of the method is
to compare the accuracy of the modal solution in terms of
residual.

Let Ǔ (displacement vector (of length n−nj) of the first
substructure of degrees of freedom which do not belong to
the boundary), Ǔb (common displacement vector) be the
solution of the modal problem obtained with a selection of
m and m modes. One residual vector can be computed for
each substructure,

R =
[Ǎ] [0]
[0] [Ǎb]

Ǔ
Ǔb

− F̌
F̌b

R =
[Ǎb] [0]
[0] [Ǎ ]

Ǔb

Ǔ
− F̌b

F̌
. (11)

These residuals (which should be null if the displacements
correspond to the exact ones) allow to control the num-
ber of modes for each substructure. There is a need of two
scalar parameters ε and ε that must be chosen. If R > ε,
the number of modes for the first substructure is not suffi-
cient and m is incremented. Similar procedure can be done
for second substructure. Hence, the modal families can be
selected separately for the two substructures. In the case
of a bandwidth frequency resolution, the method is as fol-
lows. 1 mode is selected for both substructures and the
modal resolution is undertaken. If the criterion condition
are verified the following frequency is considered. In the
other case a mode is added to the substructure having the
maximum R /ε ratio and the modal resolution is done
another time. The procedure is continued until the crite-
rion are reached for both substructures; when it is the case
the following frequency is considered. Choice of ε and ε
is crucial and is the key point of this automatic selection
procedure. Examples are given in the application section.

3. Porous-porous structure

In this section, the monodimensional problem (depicted
in Figure 1) of two porous structures bonded onto a hard
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backing is studied. Each piece, of thickness 2 cm, is dis-
cretized by finite-element using the {us,ut} formulation.
N and N elements are respectively considered for the first
and second layer. Properties of the media are given in Ta-
ble I.

3.1. Discretized problem in physical coordinates

The nodal problem (1) for the case of interest reads [13]








P̂ [K0] [0] [0] [0] λs 0
[0] Keq[K0] [0] [0] 0 λt

[0] [0] P̂ [K0] [0] λs 0
[0] [0] [0] Keq[K0] 0 λt

λt
s 0t λ t

s 0t 0 0
0t λt

t 0t λ t
t 0 0




−ω2




ρs[M0] γρeq[M0] [0] [0] 0 0
γρeq[M0] ρeq[M0] [0] [0] 0 0

[0] [0] ρs[M0] γ ρeq[M0] 0 0
[0] [0] γ ρeq[M0] ρeq[M0] 0 0
0t 0t 0t 0t 0 0
0t 0t 0t 0t 0 0








·







us
ut
us
ut
fs

ft







=







Fs

Ft

Fs

Ft

0
0







(12)

Physical parameters are obtained with the Biot-Allard the-
ory and expressions can be found in Appendix A1. For
each porous structure solid and total displacement are dis-
cretized with linear finite element and the same mesh is
used. The values of [K0] and [M0] can be found in Ap-
pendix A2. Dirichlet conditions are imposed on the sec-
ond substructure; hence n = 2(N + 1) and n = 2N .
us and ut (resp. us and ut) correspond to the solid and
total displacement nodal vector which are both of length
N + 1 (resp. N ) for the first (resp. second) substructure.
As {us,ut} formulation [13] is considered the continuity
relations are simple and λs = λt (resp. λs = λt) is a vec-
tor of length N + 1 (resp. N ) whose only non-null com-
ponent is 1 (resp. −1) at the last (resp. the first) index.
Hence, the last two lines correspond to the continuity of
the solid and total displacements. fs and ft correspond to
interaction forces (for the solid in-vacuo and the pressure)
and are both scalar unknowns of the problem. Concerning
forces in the right hand side, the only non-null value is a
unit force on the first degree of freedom of Ft.

3.2. Modal shapes of the problem and DMT

The eigenmodes [Φ] of the first substructure are obtained
by solving the generalized eigenvalue problem associated
to matrix [K0] and [M0]. The eigenvectors are normalized
with respect to [M0] so that [Φ]t[M0][Φ] is the identity
matrix and [Φ]t[K0][Φ] is the diagonal matrix [k2] of the
eigenvalues k2

i . Note that for this first substructure a rigid
body mode exists whose displacements are all equal. For

Figure 1. Configuration of the problem.

each one of the porous, the solid and total displacements
should be approximated by a modal decomposition. If no
correction is applied for non preserved modes (DMT),
displacements are expressed in their modal form and La-
grange multipliers are kept. Hence, one has







u
s
u
t

u
s
u
t

fs

ft







=




[Φ] [0] [0] [0] [0]
[0] [Φ] [0] [0] [0]
[0] [0] [Φ ] [0] [0]
[0] [0] [0] [Φ ] [0]
[0] [0] [0] [0] [I2]










q
s
q
t

q
s
q
t

fs

ft







. (13)

In all the paper [Ik] denotes the identity matrix of size k.
The same number of modes is preserved for the solid and
total displacement and the modal matrix of (13) is of size
(2(N +N + 1) × 2(M +M + 1)).

3.3. Attachment modes, frequency dependance,
ICMT and FICMT

The first step of ICMT and FICMT is to calculate the at-
tachment modes associated to the static contributions of
non preserved modes. For the problem of interest, 5 at-
tachment modes need to be calculated. Concerning sub-
structure 1, one attachment mode related to excitation is
needed. For both substructures, two attachment modes are
associated to the interface, the first (resp. second) one cor-
responding to the in-vacuo excitation (resp. the pressure).
It can be shown that this first and second attachment modes
are proportional with respect to elastic coefficients. Hence,
the method to obtain them is first to compute solutions as-
sociated to shape matrices [K0] and [K0] and then to divide
by the adequate elastic modulus.

Concerning substructure 1, [K0] is not invertible as the
first mode Φ1 is not elastic but a constant displacement
rigid body motion. To avoid this problem, let now consider
the following matrices:

P = In+1 −Φ1Φt
1 M0

KP
0 = P t K0 P , FP

t = P tFt. (14)

[P] is a projection matrix which filter the rigid mode Φ1.
[KP

0 ] is not invertible but let uP be the displacement vector
of length N obtained while solving the problem obtained
by removing last line and column of [KP

0 ] as well as the
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last line of FP
t . One then defines

uF = P
uP

0
, SF =

m

i=2

Ft
t

ki
2
Φi

HF = uF − SF . (15)

HF is not exactly the static contribution of higher modes
at frequency ω but it has to divided by a compressibility.
As Keq is frequency dependent, this should be done with
care. The modal contributions qsi and qti at frequency ω to
modal forces F s

i and F t
i are solution of the equations [13]

P̂ k2
i q

s
i − ω2(ρsqsi + γρeqq

t
i ) = F s

i , ,

Keqk
2
i q

t
i − ω2(γρeqqsi + ρeqq

t
i ) = F t

i . (16)

Neglecting inertial effects induces that qsi = F s
i /P̂k2

i and
qti = F t

i /Keqk
2
i . These two relations indicates that the elas-

tic properties that should be considered are the one of the
current frequency and not the one at null frequency. Hence,
HF should be divided by Keq to obtain the attachment
mode.

While applying symmetry and linearity properties, it is
straightforward to calculate the pressure (resp. in-vacuo)
attachment modeH0/Keq (resp.H0/P̂ ) at the interface be-
tween porous 1 and 2.

For second substructure, let now define

u0 = [K0]
−111, S0 =

n

i=1

Φi(1)

ki
2

Φi

H0 = u0 − S0. (17)

[K0] is real symmetric and positive-definite so that there is
no problem of existence in the preceding equations.

Hence, it is now possible to build the matrices and vec-
tors of eq. (9). In the following equations, index in paren-
thesis corresponds to the dimension of vectors and matri-
ces.

H(F, 0) =





0N+1
HF

Keq





(2N+2×1)

Hb(F, 0) =





0
HF (N + 1)

Keq





(2×1)

. (18)

The N + 1 index is associated to the last dof of sub-
structure 1 which corresponds to the interface. For both
substructures two attachment modes are needed; the first
(resp. second) one is associated to the continuity of the
in-vacuo (resp. pressure) force,

H(1j, 0) =




H0

P̂
0

0
H0

Keq




(2N+2×2)

H (1j, 0) =




H0

P̂
0

0
H0

Keq




(2N ×2)

. (19)
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Figure 2. Solid displacement of the two porous structures.
Solid: analytical solution; Dash-dot: DMT; Dash: ICMT;
Circles: FICMT.
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Figure 3. Total displacement of the two porous structures.
Solid: analytical solution; Dash-dot: DMT; Dash: ICMT;
Circles: FICMT.

As two continuity conditions are involved, [Rb] is a 2 × 2
matrix,

Rb = (20)



H0(N + 1)

P̂
+
H0(1)

P̂
0

0
H0(N + 1)

Keq

+
H0(1)

Keq




(2×2)

.

This matrix is diagonal due to the decoupling of in-vacuo
stress and pressure in {us,ut} formulation. The first index
of the second substructure is associated to the interface and
the modal matrices at the boundary read:

Φ
b

=
Φ(N + 1) 0

0 Φ(N + 1) (2×2m)

Φ
b

=
−Φ (1) 0
0 −Φ (1) (2×2m )

. (21)

Now, all elements of problem (9) are known. Modal solu-
tions though ICMT and FICMT can be obtained.

3.4. Results

Figure 2 and 3 respectively present the solid and total dis-
placement of the structures at 1500 Hz. 2 modes are used
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Table I. Parameters of porous material A and B.

Mat Porosity Flow resistivity Tortuosity Viscous characteristic Thermal characteristic
φ σ (N m−4 s) α∞ length Λ (m) length Λ (m)

A 0.97 87000 1.52 3.7 10−5 1.2 10−4

B 0.97 40000 1.06 0.56 10−4 0.112 10−3

Mat Density Young’s modulus Loss factor Poisson coefficient
ρ1 (kg m−3) E (Pa) ηs ν

A 31 1.43 107 0.055 0.3
B 130 0.44 107 0.3 0.1
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Figure 4. Total displacement of the two porous structures, detail
near the excitation. Solid: analytical solution; Dash-dot: DMT;
Dash: ICMT; Circles: FICMT.
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Figure 5. Absorption coefficient versus frequency for 1 mode in
each porous substructure. Solid: analytical solution; Dash-dot:
DMT; Dash: ICMT; Circles: FICMT; Plus: FICMT under as-
sumption that the contribution of the attachment mode associated
to the force is 1.

for the the first substructure and 1 mode is considered for
the second substructure. For the solid displacement the
ICMT and the proposed approach perfectly match with the
analytical solution. For these two methods, the correction
at the interface between the two porous materials allows
a non null stress at the interface. For the DMT, one can
observe that the space derivative of the displacement at
the interface is null. It is a consequence of the only use
of free interface modes. A similar remark can be done

for the force correction: The space derivative of the to-
tal displacement is null at the left interface for DMT an
ICMT while it coincides for the FICMT. Concerning the
displacement shape, the difference between the ICMT and
the FICMT is more important for the total displacement
than for the solid one (At the air-porous interface, the dif-
ference is equal to 15% for the total displacement and a
detail on the left substructure for the total displacement is
provided in Figure 4). This can be understood as the force
correction concerns the pressure for the case of interest.

Figure 5 represents the absorption coefficient as a func-
tion of frequency. The first resonance is at 600 Hz and the
second one at 1800 Hz. The three modal techniques are
compared and for each one of them only 1 mode in each
substructure is considered. It can be noticed that the DMT
does not provide accurate results in this case. The ICMT
agrees till the first resonance, and then diverges from the
analytical solution and the FICMT is in good agreement
till the second resonance. Hence the static correction for
the contribution of higher modes to the excitation allows
to maintain the performance of the technique in a addi-
tional 700 Hz frequency range. After the second resonance
there is a need for an additional mode and there is no doubt
that the resonance of a mode cannot be replaced by a static
correction. As intermediate conclusion, it appears that the
FICMT is the most accurate techniques among these three
and that it is able to limit the number of kept modes to the
adequate ones.

The automatic selection procedure is now studied and
this method is only studied for the case of FICMT tech-
nique as the two other techniques are less accurate. Fig-
ure 6 (resp. 7 represents the evolution of the residual error
ε1 and ε2 (resp. the number of preserved modes for the
first and second substructure) as a function of frequency.
For frequencies lower to 555 Hz, only one mode were re-
tained for both structures. In this range the residual error
increases with frequency until the residual error on the left
substructure reach the tolerance. A mode is the added to
the left part. This induces a huge decrease of the residual
error of the first substructure. Even if the range of the fig-
ure does make it noticeable, the error on the second sub-
structure also decreases (from 0.0198 to 0.0168). In the
second frequency part, 2 modes are considered for the left
structure and one for the right one. It can also be noticed
that the error is not always increasing with the frequency.
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Figure 6. Error with a truncation criterion on the residual ε1 =
ε2 = 0.1. Solid: Error relative to the left substructure; Dash-dot:
Error relative to the right substructure.
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Figure 7. Number of selected modes versus frequency. Solid:
Modes of the left substructure ε = 0.1; Dash-dot: Modes of the
right substructure ε = 0.1.
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Figure 8. Total displacement at 2300 Hz. Solid: Analytical solu-
tion; Dash-dot: Solution with (2;1) modes; Dash: Solution with
(2;2) modes; Circles: Solution with (3;2) modes.

Around 2300 Hz several modes are added; one to the left
at 2270 Hz and one to the right at 2420 Hz. The total dis-
placement shape is plotted at 2300 Hz in figure 8 for differ-
ent number of modes to understand the influence of added
modes.

Figure 9 proposes the error on the absorption coefficient
as a function of frequency for different values of the resid-
ual error criterion. It can be noticed that this error does
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Figure 9. Error on the absorption coefficient versus frequency.
Dash: ε = 0.1; Solid: ε = 0.5; Dot: ε = 2.

not coincide with the residual one (there is no mathemat-
ical or physical reason for this). Nevertheless, the more
the residual criterion is weak and the lower is the error on
the absorption coefficient. Nevetheless, for this problem,
errors are very weak (it was shown that 1 mode in each
substructure is sufficient until 1800 Hz.).

4. Case of porous-air structure

The monodimensional problem of one porous layer lying
over an air plenum is studied. This problem is the same
than the one of the preceding section and depicted in Fig-
ure 1 but the second porous layer is replaced by an air cav-
ity. The porous layer is discretized by finite-element using
the {us,ut} formulation. The air medium is discretized us-
ing displacement formulation and ua denotes the dof vec-
tor. As there is analogy between this problem and the pre-
ceding one, similar notations are used.

4.1. Implementation of the problem

Nodal problem in physical coordinates reads







P̂ [K0] [0] [0] 0s
[0] Keq[K0] [0] λt

[0] [0] K0[K0] λa

0ts λt
t λa

t 0


 · · ·

− ω2




ρs[M0] γρeq[M0] [0] 0s
γρeq[M0] ρeq[M0] [0] 0t

[0] [0] ρ0[M0] 0a
t0s t0t t0a 0








·






us
ut
ua
fc





=






Fs

Ft

Fa

0





. (22)

us and ut are both N + 1 length and ua is of size N . K0 is
the adiabatic bulk modulus of air, and ρ0 is the air density.
fc corresponds to interaction forces between both media.
λt and λa are defined similarly to the preceding section.
Hence, the last line is associated to the continuity of total
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and air displacements at the interface. Eigen-modes of the
porous substructure are computed as proposed in section
III. The eigen-modes of the air substructure are obtained
by solving the generalized eigenvalue problem associated
to matrix [Ka] and [Ma] . The eigenvectors are normal-
ized with respect to [Ma]. For DMT, displacements are
expressed in their modal form and Lagrange multipliers
are kept,






u
s
u
t
u
a

fc





=




[Φ] [0] [0] 0
[0] [Φ] [0] 0
[0] [0] [Φ ] 0
0t 0t 0t 1









q
s
q
t
q
a

fc





. (23)

Attachment modes linked to the excitation are independent
from the second substructure; they are then not modified

H(F, 0) =





0N+1
HF

Keq





(2(N+1)×1)

Hb(F, 0) =





0
HF (N + 1)

Keq





(2×1)

. (24)

Regarding the interface, the in-vacuo force of the porous
is null and only the continuity of pressure is concerned
inducing that only 1 attachment mode is necessary for both
structures. One has

H(1j, 0) =





0N+1
HF

Keq





(2(N+1)×1)

H (1j, 0) =
H0

K0 (N ×1)
(25)

and [Rb] is only a scalar,

Rb =
H0(N + 1)

Keq

+
H0(1)

K0
(1×1)

. (26)

The modal matrices at the boundary then read

Φ
b

= Φ(N + 1) (1×m), ,

Φ
b

= −Φ (1) (1×m ). (27)

4.2. Results

The proposed example considers a porous layer of ma-
terial A and 5 cm thickness and an air plenum of 10 cm.
30 nodes are used for each substructure which ensures the
convergence of the discrete model in the frequency range
of the study. Properties of the material A are given in Ta-
ble I. Bulk modulus K0 and air density ρ0 are the one
corresponding to a pressure of 101300 Pa and temperature
20oC.

Figure 10 presents the total displacement at 500 Hz.
Two modes are considered for porous and air. Influence of
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Figure 10. Total displacement of the porous structure and air
displacement. Solid: analytical solution; Dash-dot: DMT; Dash:
ICMT ; Circles: FICMT.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

A
bs
or
pt
io
n
co
ef
fic
ie
nt

Figure 11. Absorption coefficient versus frequency. Solid: Exact
solution; Dash-dot: ε = 0.4; Dash: ε = 0.2.
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Figure 12. Number of selected modes versus frequency. Solid:
Modes of the porous substructure ε = 0.2; Dash-dot: Modes of
the air substructure ε = 0.2; Dash: Modes of the porous substruc-
ture ε = 0.4.

the external force correction is noticeable as the displace-
ment at the interface: FICMT is nearly closed to the ana-
lytical solution as the error of ICMT and DMT is around
20%. Accuracy of FICMT is also shown in this example.
Similarly to preceding section, Figure 11 presents the ab-
sorption coefficient as a function of frequency and Fig-
ure 12, the associated number of preserved modes with
the automatic procedure. The result for ε = 0.2 is inter-
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esting and it can be observed that modes are added near
the resonances (i.e. when they contribute to the response
of the structure). For ε = 0.4, a discontinuity is observed
in the absorption coefficient. The reason is that the sec-
ond mode for the porous is added after 500 Hz instead of
150 Hz. Hence, in this frequency range, the numerical cost
is lower (less mode than necessary) but this has an influ-
ence on accuracy.

5. Conclusion

An free interface CMS technique has been proposed for
the resolution of problem with coupled substructures in-
cluding porous media. This technique is based on normal
modes. Additional attachment modes are added in order to
take into account the influence of non preserved modes.
These attachment modes concern both the interface be-
tween substructures as well as the external excitation on
substructures. Frequency dependence of poroelastic coef-
ficients has been taken into account in the frequency loop.
A simple criterion based on the evaluation of a residual
vector has been implemented. This allows an automatic
selection of the number of preserved modes.

The method has been validated in comparison with ana-
lytical model on two 1D configurations involving two lay-
ers of porous material bonded onto a hard backing or a
porous layer with an air plenum to demonstrate the abil-
ity of the method to handle coupled systems. It is also
compared to the direct modal technique without correc-
tion (DMT) and to the Craig and Chang technique ICMT
(Interface Corrected Modal Technique) where correction
is applied only at the interface. Even if results are not pre-
sented in this paper the technique has been validated on a
wide range of materials. Other monodimensional configu-
rations have been studied and confirms the convergence of
the method.

It is shown that the proposed approach perfectly
matches with the analytical solution for a number of
modes corresponding to the one which should be excited.
Considering absorption coefficient, discrepancies between
different methods appear above the first resonance mode
but the proposed technique matches with the analytical so-
lution. It was necessary to consider such simple problems
to ensure the validity of the method but these examples are
not the best one to check for the efficiency in terms of com-
putational cost. It is a perspective of this paper and further
works consists in applying this technique to 2D and 3D
problems to better quantify the efficiency of this method.
In particular shear waves will be involved. It should also
be applied in configurations where the substructures have
a high ratio of interface to interior degree of freedom to
investigate its performance.

Appendix

A1. Topics on Biot-Allard model

This appendix provides the expressions of the inertial and
constitutive parameters of the Biot-Allard model. All these

expressions can be found in Allard [1]. This model al-
lows to find the expressions of the coefficient used in the
manuscript as a function of the material properties. These
expressions are given for a circular frequency ω.

The density terms are first reminded. They are given by

ρ1 = (1 − φ)ρs, ρ2 = φρ0, ρ12 = −φρ0(α∞ − 1).(A1)

φ is porosity, ρs is skeleton material density, ρ0 is intersti-
tial fluid density and α∞ refers to geometric tortuosity. ρ12

accounts for the interaction between the inertia forces of
the solid and fluid phase.The apparent inertial mass can be
introduced:

ρ12 = ρ12 −
b

jω
, ρ22 = ρ2 − ρ12.

The viscous effects are modelled through b coefficient
whose expression is

b = jωφρ0(α − α∞), (A2)

α is the dynamic tortuosity defined by

α = 1 − jφσ
α∞ρ0ω

1 − 4jα2
∞ηaρ0ω

(σΛφ)2
. (A3)

σ is the flow resistivity, ηa is the dynamic viscosity of air
and Λ is the viscous characteristic length. The equivalent
density ρeq and coupling coefficient are given by

ρeq =
ρ22

φ2
, γ = φ

ρ12

ρ22
− 1 − φ

φ
. (A4)

The thermal properties are given by the dynamic com-
pressibility Keq,

Keq = (A5)
γP0

γ − (γ − 1)


1 +

8ηa
jΛ Prωρ0

1 +
jρ0ωPrΛ 2

16ηa




−1
,

where Λ is the thermal characteristic length, Pr is the
Prandtl number, P0 is the ambiant pressure, γ is the ra-
tio of specific heats of air. For sound absorbing materials,
one has

Q = φ(1 − φ)Keq, R = φ2Keq. (A6)

The structural mechanical parameters N and Â are given
by

N =
E(1 + jηs)
2(1 + ν)

, Â =
2Nν

1 − 2ν
, P̂ = Â + 2N. (A7)

The two compressional waves of the porous medium are
defined by their wave number δi and the ratio of the total
displacement over the solid one µi. They are defined by

δ2
i =

δ2
s2 + δ2

eq ± δ2
s2 + δ2

eq
2 − 4δ2

eqδ
2
s1

2
, (A8)
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with

δeq = ω
ρeq

Keq

, δs1 = ω
ρ

P̂
, δs2 = ω

ρs

P̂
, (A9)

with

ρ = ρ1 − ρ12 −
ρ2

12

ρ2 − ρ12
, ρs = ρ + γ2ρeq (A10)

and

µi = γ
(δ2

i − δ2
s2)

δ2
s2 − δ2

s1

= γ
δ2
eq

δ2
i − δ2

eq

. (A11)

A2. Matrices for monodimensional prob-
lems

K0 =
1
h




1 −1 0 0 0
−1 2 −1 0 0

0
. . .

. . .
. . . 0

0
. . . −1 2 −1

0 0 −1 1




(A12)

M0 =
h

6




2 1 0 0 0
1 4 1 0 0

0
. . .

. . .
. . . 0

0
. . . 1 4 1

0 0 1 2




(A13)

K0 =
1
h




1 −1 0 0 0
−1 2 −1 0 0

0
. . .

. . .
. . . 0

0
. . . −1 2 −1

0 0 −1 2




(A14)

M0 =
h

6




2 1 0 0 0
1 4 1 0 0

0
. . .

. . .
. . . 0

0
. . . 1 4 1

0 0 1 4




(A15)

h and h correspond to the length of the elements.
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