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Precise knowledge of the dependence of elastic modulus and Q factor on the amplitude of excitation
is a prerequisite for the development and validation of models to explain the hysteresis observed in qua-
sistatic experiments for various media, i.e., the different deformations at the same applied stress observed
when stress change rate is positive or negative. Separation of different contributions to dynamic nonlin-
earity (e.g., those due to nonequilibrium effects, often termed conditioning) and independent estimation of
nonlinearities originated by the strain dependence of velocity and the damping factor are required, which
is often not possible with standard approaches. Here we propose and validate a method that, measuring
the response of a sample to a monochromatic excitation at different amplitudes, allows fast, continuous,
and quasi-real-time monitoring of the dependence of the material elastic properties on amplitude: dynamic
elastic modulus (related with velocity through density) and Q factor of the mechanical resonances (related
with wave-amplitude attenuation parameters).

DOI: 10.1103/PhysRevApplied.11.054050

I. INTRODUCTION

Understanding the physical origin of elastic nonlinear-
ity and hysteresis in consolidated [1–4], unconsolidated
[5], or damaged [6] granular media requires the separation
of modulus- and attenuation-coefficient strain dependen-
cies, which cause a nonlinear response of the medium to
an ultrasonic excitation (nonlinear dependence of stress on
strain). For the sake of simplicity, in the following we use
the term velocity or damping nonlinearity to indicate the
sample nonlinearity due to the strain dependencies of the
two variables. The role of conditioning, memory and relax-
ation [7,8], i.e., the dependence of velocity and Q factor on
time and on maximum strain (history), should also be clari-
fied and their effect decoupled from classical effects due to
the actual amplitude dependence of investigated physical
quantities [9].

Several nonlinear indicators [10–15], i.e., measurable
quantities, which are analyzed as a function of strain
amplitude, are used to quantify nonlinearity, but often
provide a measurement in which effects resulting from
nonlinear attenuation and nonlinear elasticity are mixed
up. Also the definition of the Q factor used, e.g., in nonlin-
ear resonant ultrasound spectroscopy [16–19], is critical,
due to distortions of the resonance curve, which, e.g., is
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no longer symmetric. A Q factor could always be defined
from half width at half height, but its link with the damp-
ing coefficient is no longer well defined. At the same time,
due to the intrinsic time required for acquisition (which
might be of the order of tens of seconds when averag-
ing is needed), monitoring early stages of conditioning and
relaxation is often problematic [7,8].

Finally, we recall that most commonly the nonlinear-
ity of a sample is classified according to a power-law
dependence of the nonlinear indicator on a not univocally
specified “amplitude” of excitation [20,21], which often is
the strain amplitude evaluated at the same spatial position
where the signal is measured. Different components of the
strain field are neglected and often the longitudinal compo-
nent only (to which the detecting sensor is more sensible)
is considered, which is correct when one-dimensional (1D)
geometries are considered.

Furthermore, measurements, in general, provide an esti-
mate of the nonlinear indicator resulting from the global
effect of a particular wave, e.g., one (or more) cycle of
a periodic sinusoidal wave. In reality, however, veloc-
ity and damping vary continuously with time, following
the evolution of the wave itself and their ”average” esti-
mation over a cycle, might be misleading in the valida-
tion of models based on physical assumptions [22–24].
The dynamic modulus can indeed be measured using the
dynamic acoustoelastic testing (DAET) approach [25–28],
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which tracks nonlinearity in time as a function of the
so-called pump amplitude. Even in this case, it is however
difficult to estimate correctly the Q factor of the material
and the experimental configuration might be complex to
implement.

The goal of this paper is to propose and validate an
experimental technique to measure the dependence of
velocity and damping on amplitude, with an exact ana-
lytical separation of the contributions. In this paper, mea-
surements make use of monochromatic waves at varying
amplitude, in contrast with resonance frequency mea-
surements in which sweeps or a succession of several
monochromatic waves at increasing frequency are needed.
The proposed method is therefore easy to implement and
acquisitions can be extremely fast, continuous, and almost
in real time (including averaging). Finally, the monochro-
matic wave can be excited close to resonance in order to
provide sufficient energy to excite and easily probe the
hidden nonlinearity within complex media.

II. THEORY

A. Linear solution derivation

Let us consider a 1D elastic medium, in which wave
propagation, considering negligible attenuation due to
external factors (e.g., friction over air), is governed by
elasticity and internal friction [29–31]:

ρ
∂2u
∂t2

− ψ
∂3u
∂x2∂t

= S
∂2u
∂x2 . (1)

Depending on the forcing, the variable u(x, t) could be
a longitudinal or transverse (or both) displacement. In
the cases considered in the experimental part, transducers
always excite and detect longitudinal displacements. In the
above equation, ρ is density, ψ the attenuation parame-
ter, and S the elastic modulus (Young or shear modulus,
depending on excitation).

In the case of a semi-infinite medium with a monochro-
matic forcing F(t) in x = 0, a possible solution is a
monochromatic wave field:

u(x, t) = U0e−αxe j [ω(t−t0)−kx], (2)

where φ0 = −ωt0 and U0 are the phase and amplitude at
x = 0 and t = 0. The phase velocity is given by c = ω/k
and the Q factor is Q = ω/αc.

By introducing Eq. (2) into Eq. (1), we obtain a link
between the modulus and attenuation parameter, the wave
number k, and attenuation coefficient α:

S = ρω2(k2 − α2)

(k2 + α2)2
,

ψ = 2αk
ρω

(k2 + α2)2
.

(3)

}}

FIG. 1. Scheme of the 1D multiple reflections’ vibration model.

Note that, when considering monochromatic waves, as in
the present approach, the solution remains valid also in
the case of a Newtonian viscosity-based attenuation term,
which is often used also to describe attenuation in solids
with different Kramers-Kronig relationships.

Considering a finite medium of length L with free-free
boundary conditions, the analytical solution for the dis-
placement in L can be found considering that the solution is
the superposition of multiple reflections (see Fig. 1). Con-
sidering that, at free boundaries, waves (displacements) are
reflected with the same amplitude as the incoming wave
(while strains are reflected with a reflection coefficient
R = −1 due to the sign change of wave vector), it follows

u+(x, t) =
∞∑

n=1

U0ej {ωt−k[2(n−1)L+x]+φ0}e−α[2(n−1)L+x],

u−(x, t) =
∞∑

n=1

U0ej [ωt−k(2nL−x)+φ0]e−α(2nL−x),

u(x, t) = u+(x, t)+ u−(x, t).

(4)

The solution at the edge of the sample (x = L) is again
a sinusoidal wave with amplitude A and phase φ:

u(L, t) = Aej [ω(t−t0)+φ] = Aej (ωt+�), (5)

where

A = U0√
cosh2(αL)− cos2(kL)

, (6)

� = φ0 + φ = φ0 − arctan
[

tan(kL)
tanh(αL)

]
. (7)

We recall that U0 is the amplitude of the solution at x = 0
for a semi-infinite medium, where the phase is φ0 [see
Eq. (2)]. Thus, U0 has the meaning of the contribution
to the displacement amplitude in x = 0 due to the forcing
induced by the transducer, which is added to the contribu-
tion to displacement (always in x = 0) due to the multiply
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reflected traveling waves. As such, U0 (and the same for
φ0) is a property of the transducer, which, as discussed
later, can be determined only from a proper calibration
procedure. If the transducer is linear, proportionality holds
true for U0 in the sense that, amplifying voltage amplitude
at the source of a factor k, the same amplification applies
to U0 (while φ0 is unchanged).

Details of the derivation are reported in Appendix A.
In Appendix B, we show how the solution and boundary
conditions look when strains are considered and the role
of U0 is further clarified. As shown, the quantity U0 is also
proportional to the amplitude of the driving force generated
by a light transducer located at x = 0. We anticipate here
that in our experiments the signals are detected at x = L
with a second light transducer.

Modifications of the solution in the case of not free-
free boundary conditions are discussed in Appendix C. We
remark here that with the term free-free boundary con-
ditions we indicate that the resonant frequencies in the
experimental setup are practically the same as the frequen-
cies of the fundamental modes of free oscillations, which,
as discussed in Appendix C, is verified in the experiments
discussed in Sec. IV.

B. Inversion

Equations (6) and (7) can be used to extract k and α from
experimental data. Let us consider a 1D sample excited at
one edge with a sinusoidal wave at frequency ω. The sig-
nal at the other edge can be recorded and its amplitude A
and phase � = φ + φ0 (we recall that φ0 = −ωt0) can be
derived by fitting experimental data with a cosine func-
tion. Furthermore, calibrating the experiment as discussed
in the next subsection, U0 and φ0 = −ωt0 can be derived.
Thus also the phase φ = �− φ0 can be measured. Invert-
ing Eqs. (6) and (7), we obtain the physical parameters. In
particular, we have

c = ω/k = ω

1
L

[
πn ± arctan

√
z

2 cos2(φ)

] , (8)

α = 1
L

artanh
√

z
2 sin2(φ)

, (9)

where the sign is plus if φ + φ0 > 0, n is the order of the
closest mode to ω and

z = −(A/U0)
2 − cos(2φ)

+
√

1 + (A/U0)4 + 2 cos(2φ)(A/U0)2. (10)

The solution is derived in Appendix D. Once the wave
number k and attenuation parameter α are determined,
modulus and damping factor can be derived using Eq. (3).

C. Calibration

As discussed, a preliminary calibration of the experi-
ment is needed to derive the amplitude U0 and the phase
φ0, which do not coincide with those at the generator due
to the presence of the circuit connected to the two trans-
ducers. To this purpose, two signals are measured at x = L
when exciting the sample (at x = 0) with two sinusoidal
waves at slightly different frequencies (ω0 and ω0 + δω) at
the same (linear) injection amplitude. Phases and ampli-
tudes of the two signals are measured and, since the two
frequencies are close, we can neglect dispersion in both
attenuation and velocity. It follows that Eq. (9) provides a
set of four equations (two for each signal and frequency),
with four unknowns; c, α, U0, and φ0.

In principle, calibration is obtained measuring only two
signals. For practical purposes, in order to reduce errors
in the evaluation of U0 and φ0, the procedure can be
repeated for several couples of frequencies and averaging
the obtained values for U0 and φ0. From the experimental
point of view, it should be verified that the response of the
detection and acquisition system is frequency and ampli-
tude independent. In particular, the linearity of transducers
must be tested to ensure that calibration obtained at one
level of excitation can be straightforwardly scaled to any
amplitude. Note also that, in order to increase signal-to-
noise ratio it is better to perform the calibration in a narrow
frequency range around one mode.

III. NONLINEARITY

The linear Eq. (1) and linear solution (5) are of course
not valid in the exact form for nonlinear media. However,
as we discuss here, they can still be used to characterize
nonlinearity as the deviation from the linear behavior.

When dealing with nonlinear media in fact, velocity
and damping are a function of strain, which means that,
even in the simplest 1D case with longitudinal propa-
gating waves, two considerations have to be taken into
account: additional model parameters (e.g., nonlinear mod-
uli) are needed to describe the system; velocity and damp-
ing depend implicitly on time, since strain depends on
time (and also position). This leads to two major prob-
lems: if only one point can be accessed for measurements
(as normally in experiments longitudinal transducers can
be located only on the opposite faces of the sample) only
two variables can be measured; since these two quantities
are derived using signals, which have a time scale longer
than one period (and the propagation path from source
to receiver is of the order of the wavelength or larger),
intrinsic averaging is implicit.

For several materials (mostly consolidated granular
media or damaged samples), nonlinearity can not be
described by a simple Taylor expansion, rather condition-
ing and hysteresis makes velocity (and damping) depen-
dent not only on strain (ε), but also on the maximum
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strain (εmax) to which the sample is subjected. The sim-
pler expression to define the situation is to assume that two
contributions must be considered

c = cL + δcneq(εmax)+ δcNL(ε). (11)

The terms cL, δcneq and δcNL represent the linear veloc-
ity and the contribution of nonequilibrium and nonlinear
terms to velocity, respectively. Here, and in the follow-
ing, the same considerations that hold for damping are
not discussed. Without expressions for the two functions,
δcneq and δcNL, any further exact analytical treatment is not
possible and this is not the purpose here.

The contribution to nonlinearity due to conditioning
(i.e., the transition of the material to a new equilibrium
state as a function of the maximum strain applied) corre-
sponds to the transition of the material to a new linear state
with different velocity, given by the first two terms in Eq.
(11). Thus, as long as explicit dependence on strain [term
δcNL(ε)] is zero (small), the linear solution with an ampli-
tude dependent c and α is exact (well approximated). This
is often the case [4,7,8,11,26].

As mentioned, whenever distortions of the output signal
from a pure monochromatic wave are weak, i.e., for small
nonlinearities and/or small amplitudes of excitation, output
data can be analyzed as if the solution of an “equivalent”
linear medium with velocity and damping which are dif-
ferent from the linear (intended as low amplitude) velocity
and damping. We analyze the signals used in this study
and verify that, even though there are significant nonlinear

effects, as discussed later, distortions of the signals from
monochromatic waves [due to the strain-dependent part of
the velocity: δcNL(ε) in Eq. (11)] are sufficiently small to
allow applying our treatment.

In Fig. 2, a typical experimental signal recorded on the
Berea sandstone sample is reported in red and a fitting sinu-
soidal function is shown in dashed blue. The monochro-
matic solution is an excellent approximation and only
small distortions might be appreciated. A FFT analysis fur-
ther confirms that higher-order harmonics are negligible.
The fitting analysis is conducted on signals (always on the
Berea sample) at each increasing amplitude of excitation
(Ainp) and the coefficient of determination R2 is calculated.
Its closeness to 1 indicates the good quality of the fit,
which is diminishing only slightly with increasing ampli-
tude. Note that poorer (but still acceptable) values of R2 at
lower amplitudes of the excitation are due to noise and not
to signal distortions.

Whenever an analytical model expression of nonlinear-
ity is known, an alternative to this sort of “mean-field
approach” could be to calculate the solution using a per-
turbation approach, which can however be applied only
for simple nonlinear models, e.g., the classical nonlin-
ear model. In Ref. [36] an analytical solution is given
to derive the resonance frequency shift with increasing
amplitude. The advantage of these approaches is to pro-
vide an estimate of nonlinear parameters (which is not
straightforward here). The disadvantage is that classical (or
simplified) theories do not always describe correctly the
kind of nonlinearity that is present in the material.
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FIG. 2. Verification of the validity
of a linear effective-field-like solution.
Upper row: experimental signals super-
imposed with a fitting sinusoidal func-
tion (left); FFT of the signal (right).
Lower row: R2 of the fitting sinusoidal
functions at increasing amplitudes of
excitation.
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IV. EXPERIMENTAL RESULTS

A. Experimental setup

In order to discuss the proposed approach and show
its validity, we consider different consolidated granular
samples with a quasi-1D geometry:

(a) A Berea sandstone sample in the shape of a thin
cylinder (1 cm diameter, 15 cm length). Grain size in the
tested sample is of the order of tens of micrometers.

(b) A concrete sample in the shape of a cylinder (4 cm
diameter and 16 cm length), drilled from a casting prepared
with 340 kg of cement (CEM II A-L 42.5 R), 957 kg of
sand (0–5 mm), 846 kg of gravel (5–15 mm), and 200 kg of
water [water-to-cement (w/c) ratio is approximately equal
to 0.59]. The age of the cylinder at the time of testing is
about five years, thus guaranteeing that the cement hydra-
tion process is completed. In the following, we label this
sample as B06.

(c) A cement-paste sample in the shape of a prism
(3 × 3 × 15 cm3). It is produced using Portland cement
(CEM I 42.5N) with a w/c ratio of 0.3 by mass. The age
of the prisms at the time of testing is about five years, thus
guaranteeing that the cement hydration process is com-
pleted. Curing of the samples is done in water immersion
(full saturation) for three weeks, followed by drying in
ambient conditions (pressure, temperature and humidity)
for additional three weeks. In the following, we label this
sample as B3.

The experiment is conducted using a waveform genera-
tor (Tektronix AFG 3022B) generating ultrasonic signals
defined as monochromatic waves of amplitude Ainp and
frequency ω. After amplification through a linear amplifier
(CIPRIAN Model US-TXP-3, 200 x), signals are transmit-
ted to an ultrasonic transducer with broadband response
(i.e., an almost frequency-independent response from few
kHz up to a few hundreds of kHz) acting as an emitter.
The transducer is glued to the sample using Phenyl Sal-
icylate. A second (identical) transducer is used to detect
the response of the material under test and is connected to
a digital oscilloscope (Lecroy 324A) for data acquisition.
Signals are recorded in a short time window once station-
ary conditions are reached. In order to excite longitudi-
nal modes (both transducers are working in compression
mode) and to realize quasi-1D conditions, the transducers
are glued on the bases of the sample.

Linearity of the acquisition system, including transduc-
ers and coupling, is verified in the frequency range from
1 up to 200 kHz, and up to excitation amplitudes of 2 V
(maximum voltage before amplification). Amplitudes used
in the experiment allow us to work in the nonlinear regime
of the tested specimens, but still well within the limits of
linearity of the setup. Linearity of the setup is tested by
putting in contact the source transducer with the receiver,

glued through Phenyl Salicylate. Also, we verify that in
the frequency range used in the analysis, transducers have
a flat frequency response.

B. Berea sample

1. Calibration, linear velocity, and damping
measurement

Experiments are conducted close to the third resonance
mode, to optimize the excitation. Calibration is performed
at low amplitude Ainp,0 = 50 mV (before amplification),
to guarantee that the sample behaves linearly. The proce-
dure, besides allowing compensation of the effects of the
transducer’s transfer function (for what concerns ampli-
tudes) and the phase shifts related to the acquisition chain,
also allows evaluation of the linear velocity and Q factor
(damping) of the considered samples.

Results of the calibration for various choices of the cal-
ibration frequency ω0 are reported in Fig. 3. Amplitudes
(A) and phases (�) of signals are derived fitting the exper-
imental data with a cosine function. The derived value of
the calibration parameter φ0 is reported and has been sub-
tracted from the measured phases � to obtain the actual
phase shift φ between input (x = 0) and output (x = L).
In (a) and (b) it can be evinced that calibration frequen-
cies are around a resonance mode and that the phase,
after correction due to calibration is 0 when the calibration
frequency coincides with the third resonance mode. The
fundamental resonance frequency is reported for reference.
The obtained calibration parameter U0 and the estimated
velocities and damping together with their averaged val-
ues are reported in (c), (d), and (e), and c and Q agree well
with data from the literature [37,38]. For validating cali-
bration, it is important to note that in a small frequency
range around one resonance mode results are independent
from the chosen calibration frequency. Distance correla-
tion coefficients [39] are 0.37, 0.33, and 0.42 for U0, c, and
α, respectively.

To further validate the calibration, independent mea-
surements are performed: velocity is determined by cross-
correlating the TOF and damping is measured with a
reverberation experiment (deriving the damping coefficient
from the exponential decay of the signal during reverber-
ation). Results, shown with a red line, are in excellent
agreement with those obtained with the approach presented
in this paper, thus providing a proof of the validity of the
free-free boundary conditions used to derive the solution.
Indeed, the accuracy is of less than 1%, if defined as the
difference between measured values (red line) and average
of the calibration result values. Even considering the max-
imum distance between the red line and calibration results,
accuracy is high for velocity and still less than 10% for
α. Fluctuations in velocity (about one per thousand) and
damping (a few percent) are compatible with the order of
magnitude of experimental errors (and their propagation)
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FIG. 3. Results of the calibra-
tion procedure performed. All
quantities are reported as a func-
tion of the calibration frequency.
(a) Phases (φ = �− φ0); (b)
amplitudes (A); (c) calibration
amplitude (U0); (d) estimated
velocity; (e) estimated damping.
Red lines in the last two subplots
represent the values measured
in independent experiments
using TOF observations and
reverberation decay.

and in any case are much smaller than nonlinear effects
measured on the analyzed samples.

2. Nonlinearity

Once calibration is performed, measurements can be
repeated, choosing one frequency only, at increasing
amplitude of excitation: Ainp,i = miAinp,0(i = 1, . . . , n). In
our experiments, we increase input amplitude up to 2 V
(before amplification), i.e., mn = 40. As mentioned above,
if transducers are linear the calibration parameter U0 scales
linearly with input amplitude, thus calibration should not
be repeated. In all cases, since we are working at low
strains (less than 10−7, estimated repeating measurements
at the largest amplitude of excitation and detecting out-
put signals using a laser Doppler vibrometer), distortions
of signals are minimal (see Fig. 2), thus fitting data with
a cosine function to obtain phases and amplitudes is
meaningful and, after inversion using Eq. (9) provides an
effective velocity and damping for each amplitude.

The goal of such an analysis is to plot, as a function of
the strain, the relative variations of velocity c and damping
α with respect to their linear values. Here the definition
of strain is not straightforward, since the strain is a func-
tion of position (along the sample) and time. Thus, as in
all other methods based on the measurement of a global
variable (e.g., resonance frequency), the output signal (for
each input amplitude) is the result of the propagation of the
wave in a material with nonconstant strain. It is beyond the
scope of this paper discussing whether the optimal estima-
tion of the strain is the maximum strain generated by the
propagating wave (e.g., in the center of the sample, if we
are at resonance) or the average over time and space of the
strain squared or other options.

In this paper, we use the strain definition adopted in most
of the literature (when transducers are at one edge of a 1D

sample): for recent works see, e.g., [42–44]. Depending
on the variable to which the transducers are sensitive, “the
strain is defined by dividing the peak velocity measured by
the sample’s longitudinal wave speed” [42] or as the accel-
eration amplitude at resonance divided by 8πLω2, where L
is the sample length [43]. Our sensors are sensitive to dis-
placements, i.e., the detected voltage Vout is proportional
to displacement. Being the time signal a sinusoidal func-
tion (with excellent approximation as discussed before), by
time deriving the signal we obtain the velocity amplitude
as proportional to ωVout and the acceleration amplitude as
proportional to ω2Vout. Thus applying the two definitions
of the strain ε given above, we obtain

ε ∝ ωVout/c = kVout,

ε ∝ ω2Vout/(8πLω2) = kVout/(8π2),
(12)

where we use the relation λ = 2π/k = 2L, which is valid
at resonance.

The strain, determined with the above expressions, is
thus proportional through the wave number to the detected
voltage. Furthermore, as shown in the literature (see, e.g.,
[33]), the strain close to the resonance is characterized
by an approximate sinusoidal space profile (neglecting
distortions due to attenuation):

ε(x, t) = Ak sin(πx/L)ejωt, (13)

where A is the displacement amplitude in x = L. Thus,
the quantity kVout is also proportional to the maximum
strain. Finally, we also observe that the strain is often
considered as a quantity directly proportional to the out-
put acceleration (equivalent to what is proposed here but
with a frequency-dependent proportionality constant): see,
e.g., [45].
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FIG. 4. Velocity and damping variations as a function of the product of wave number and output potential detected at the oscilloscope
(proportional to strain amplitude). Results are shown for measurements performed at different testing frequencies using the calibration
results reported in Fig. 3

The relative variations of velocity c and damping α with
respect to the linear values are shown in Fig. 4 as a func-
tion of kVout (proportional to strain) where we recall that k
is the wave number and Vout is the amplitude of the poten-
tial detected from the oscilloscope. Linear values are those
obtained during calibration and reported in Fig. 3.

Measurements are repeated at different frequencies
around the third resonance mode and also close to the

second mode (always using the calibration results dis-
cussed in the previous subsection): in agreement with
expectations, velocity decreases with increasing amplitude
of excitation and damping increases. Variations are small
for velocity (a few percent) and much higher for damping
(up to 40%). Furthermore, results seem to confirm that in
a narrow frequency range of the order of a few kHz elastic
nonlinearity for Berea does not depend on frequency [33].
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FIG. 5. Results of the calibration procedure performed for the concrete sample B06. All quantities are reported as a function of the
calibration frequency. (a) Phases (φ = �− φ0); (b) amplitudes (A); (c) calibration amplitude (U0); (d) estimated velocity; (e) estimated
damping. Distance correlation coefficients [39] are 0.6, 0.45, and 0.62 for U0, c, and α, respectively.
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Accurate measurements on Berea sandstone using DAET
indicate dependence of nonlinear parameters on frequency,
but on a much larger frequency range (from Hz to hundreds
of kHz) [40].

C. Concrete and cement-paste samples

1. Calibration, linear velocity, and damping
measurement

The same analysis is also conducted for the other tested
samples. Calibration is initially performed around a given
resonance mode (first mode for sample B06 and third mode
for sample B3), to obtain linear velocity and damping. Cal-
ibration is again performed at a low amplitude of excitation
(20 mV before amplification).

Results, as a function of the calibration frequency, are
shown in Figs. 5 and 6. Cement paste and concrete have
a higher degree of heterogeneity, which makes calibra-
tion less effective. Indeed calibration is not as independent
from frequency as in the case of Berea. Distance corre-
lation coefficients (reported in the captions) are slightly
higher than in the case of Berea, even though the small
statistical ensemble available reduces the significance of
any statistical test. The existence of a correlation between
calibration parameters and frequency can be meaningful in
the case of sample B3, for which we observe in particular
a slight increase of damping with frequency, as shown in

(e) of Fig. 6. Measured values for velocity and Q are in
good agreement with results reported in the literature for
similar samples [41] in the same frequency range, except
for damping in the cement-paste case, in which case α is
1 order of magnitude smaller than results reported in the
literature.

We also note that, as expected, the calibration parame-
ters do not differ significantly for the three samples con-
sidered, since an identical experimental setup is used for
testing the three materials.

2. Nonlinearity

Using the calibration results, it has been possible to
analyze the dependence of velocity and damping on a
quantity proportional to strain amplitude, following the
same approach described for Berea. Results are shown in
Figs. 7 and 8. In the case of sample B3 (cement paste) the
sample is tested at two close by frequencies. Nonlinearity
in concrete (Fig. 7) is very similar to nonlinearity observed
in Berea, while the behavior is slightly different in the case
of the cement-paste sample. In both cases, as in Berea,
nonlinearity in the damping coefficient is more signifi-
cant than nonlinearity in velocity. The different behavior
of B3 with respect to both Berea and concrete can be due
either to microstructural differences between the samples
or to effects linked to calibration (which in the case of B3
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FIG. 6. Results of the calibration procedure performed for the cement-paste sample B3. All quantities are reported as a function
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estimated damping. Distance correlation coefficients [39] are 0.7, 0.55, and 0.64 for U0, c, and α, respectively.
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FIG. 7. Velocity and damping
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product of wave number and out-
put potential detected at the oscil-
loscope (proportional to strain
amplitude) in the case of sam-
ple B06 (concrete). Results are
obtained using the calibration
results reported in Fig. 5

appeared more frequency dependent than for concrete and
Berea). At this stage a further analysis, also considering
a statistical ensemble of samples, is needed before being
allowed to provide a definitive answer.

D. Discussion

Before proceeding to illustrate the potential of the pro-
posed approach for applications, we summarize here the
current advantages and limitations of these kinds of mea-
surements. The potentialities of the method, which have
already been highlighted, are related to the ease of imple-
mentation, the rapidity of the acquisition protocol and the
possibility to separate damping from velocity based on a
physically grounded solution. Also, experimental observa-
tions reported here and in the following, seem to support
the robustness of the approach.

As for items that should be further investigated concern-
ing the reliability of the method, and thus can result in
limitations to the applicability under some circumstances,
we list the following:

(a) The approach works in 1D conditions only. This can
not be avoided, while we believe the limitation of using

longitudinal waves can be overcome by finding appropriate
solutions for other wave types.

(b) The approach allows determining equivalent veloc-
ities or dampings for each excitation amplitude by using
a linearized solution. In specific cases in which nonlinear-
ity assumes a well-defined expression, the analytic solution
can be modified, e.g., with a perturbation theory approach,
but in general this is not feasible. Most of the methods
available in the literature suffer from the same limitation
since they provide for each amplitude a single value, e.g.,
of velocity, while indeed the studied quantity varies with
time.

(c) Accuracy needed during calibration to obtain a
given accuracy of the results have to be carefully investi-
gated. Likewise, the accuracy of the approach should be
tested when calibration is not optimal, e.g., manifesting
frequency dependence as in the case of one of the samples
discussed here.

(d) In nonlinear systems the dependence of velocity and
damping on strain amplitude is the relevant function to be
determined. At this stage, as in most other techniques, the
approach proposed allows us to only define the dependence
on a quantity, which is proportional to strain amplitude,
thus quantification of the nonlinear parameters could be
debatable. This item surely deserves more attention and
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FIG. 8. Velocity and damping
variations as a function of the
product of wave number and out-
put potential detected at the oscil-
loscope (proportional to strain
amplitude) in the case of sam-
ple B3 (cement paste). Results
are shown for measurements per-
formed at different testing fre-
quencies using the calibration
results reported in Fig. 6.
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FIG. 9. Berea sandstone. Calculated normalized amplitudes (a) and phases (b) of signals detected for two different values of the
excitation amplitude (red and blue dots). The analytical calculation has been carried out using the amplitude dependence of velocity
and damping calculated from measurements performed at a single frequency of excitation and reported in Fig. 4. Results obtained are
compared with experimental data (solid lines), obtained measuring phases and amplitude of signals varying both input amplitude and
frequency (each point corresponding to a measurement).

the possible findings could be beneficial for other methods,
which suffer the same limitation.

V. APPLICATIONS

A. Resonance frequency shift

Several applications can be envisaged, once the depen-
dencies of velocity and damping factor on amplitude are
measured. For instance, we can derive the nonlinear reso-
nance curves. In fact, Eqs. (6) and (7) allow us to derive
the amplitude and phases of the signal as a function of fre-
quency and input amplitude Ainp,i = miAinp,0(i = 1, . . . , n),
once the dependence of c and α on A are known. The
procedure consists in finding iteratively the solution:

(a) Frequency ω and input amplitude mi are given;
using an initial guess for c and α the output amplitude
A(ω, mi) and phases φ(ω, mi) are calculated.

(b) Considering data of Fig. 4 it emerges that the
guessed velocity and damping values are not those correct
for the given amplitude. Thus, from the curves showing
dependence of velocity or damping on amplitude a new
guess for c and α is determined.

(c) Amplitude and phase are recalculated using the new
guess and the procedure is repeated up to convergence.

We first apply the procedure to the Berea sample. Results
are shown in Fig. 9 for two selected input amplitudes and
are compared with experimental data obtained from direct
measurements of phases and amplitudes with repeated
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FIG. 10. Concrete sample. Calculated (normalized to input) amplitudes (a) and phases (b) of signals detected for three different
values of the excitation amplitude (dots). The analytical calculation has been carried out using the amplitude dependence of velocity
and damping calculated from measurements performed at a single frequency of excitation and reported in Fig. 7. Results obtained are
compared with experimental data (solid lines), obtained measuring phases and amplitude of signals varying both input amplitude and
frequency (each point corresponding to a measurement).
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FIG. 11. Evolution in time of
velocity and damping measured
when conditioning amplitude is on
or off. Experiments are conducted
at different values of the condi-
tioning amplitude.

experiments injecting monochromatic waves with increas-
ing frequencies. The agreement between the results is
excellent. The approach proposed here allows determi-
nation of the shift of the resonance frequency with high
accuracy, i.e., the softening of the material with increas-
ing amplitude of excitation, and the deformation of the
resonance curve at the higher amplitude [see Fig. 9(a)].

Finally, for the concrete sample the curves describing
the dependence on amplitude of the physical parameters
(velocity and attenuation) are used to predict the resonance
curves of the sample at increasing amplitudes of excita-
tion. Results are shown in Fig. 10 for resonance curves at
three increasing amplitudes of excitation. We show here
results for the second longitudinal mode of the sample
(even though calibration and determination of nonlinearity
is carried out around the first mode) to prove the robustness
of the predictions obtained with our approach. Calcu-
lated resonance curves agree well with those measured

experimentally by sweeping frequencies. Resonance down
shift, damping increase, and curve distortions are well
reproduced by the calculations performed.

B. Conditioning and relaxation

Memory effects are peculiar of hysteretic elastic media
[7,8,34,35] and consist in the following. When a sample
is excited at a fixed (high) amplitude of excitation, transi-
tion to a nonequilibrium state is observed (conditioning),
which is manifested by a not instantaneous change of both
velocity and damping. The effect is fully reversible, i.e.,
when the excitation is removed, slowly in time the system
relaxes back to the original state (relaxation).

Full conditioning and relaxation take place on a long
time scale: minutes to hours, depending on the material.
However, monitoring early stages of the evolution of the
physical properties is of great importance to understand
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mechanisms involved in the process, since in the first few
minutes of the recovery most of the effects are manifested.
The method proposed in this paper is particularly suitable
for this purpose, since it allows monitoring in time the
independent evolution of velocity and damping with a fast
acquisition time. Measurements can indeed be performed
almost in real time, with a delay of one or a few seconds
between the first measurement and the switching on-off of
the conditioning amplitude.

To demonstrate the potential of the approach, the follow-
ing experiment is conducted on the B06 sample. After cali-
bration (same as reported previously), the sample is excited
at a low amplitude of excitation (Ainp = A0 = 0.1 V). At
a given instant, excitation is amplified to a conditioning
amplitude Ainp = Acond and through successive acquisi-
tions velocity and damping evolution are monitored. Once
steady state is reached, amplitude amplification is removed
and relaxation of the physical parameters is analyzed.

Results are shown in Fig. 11. As expected, the changes
in velocity and damping are not instantaneous and are more
and more evident when increasing the amplitude of condi-
tioning. For the considered material, time scales are the
same for both quantities and seem to be independent from
Acond. Almost complete recovery is observed in all cases in
the time window considered.

Figure 11 proves the approach proposed here to be suit-
able for the study of conditioning and relaxation, easy to
implement and fast. In Fig. 12 conditioning and relaxation
are analyzed separately for the same conditioning ampli-
tudes of Fig. 11. Here a log scale is used for the x axes, to
better appreciate evolution of early stages. In the interme-
diate time range, the logarithmic-time behavior seems to
describe well both conditioning and relaxation [46]. When
considering very early (less than about 20 s) or very late
(close to equilibrium) stages in the evolution, deviations
from the expected behavior are observed, in particular dur-
ing conditioning. The behavior during both conditioning
and relaxation should thus be described by a kinetic law
more complex than a simple logarithmic function, such as
proposed in Ref. [47].

VI. CONCLUSIONS

We propose an approach to measure the nonlinearity in
velocity and damping coefficient, which is a faster and
simpler alternative to standard approaches such as non-
linear elastic wave spectroscopy [10], nonlinear resonant
ultrasound spectroscopy [16], or dynamic acoustoelastic
testing [25,26]. The method allows independent measure-
ment of the nonlinearity in velocity and damping as the
deviation from the linear behavior of “equivalent” linear
medium with velocities and damping derived by fitting
data. As such, for a given amplitude of excitation we
lose the capability of defining nonlinear parameters, e.g.,
quadratic and cubic coefficients, because the signal itself

is averaging over one strain period and thus providing
an averaged response, as in most approaches to measure
nonlinearity, except DAET. At the same time, we keep
information about both fast and slow dynamics, the latter
being the most suitable to be studied with our approach,
since its contribution consists in bringing the system to
a new linear equilibrium state with a constant in time
new equilibrium modulus (or damping), upon which fast
dynamic nonlinearity is added. Reliability of the approach
is guaranteed only when deviations of output signals from
a purely sinusoidal behavior are small, which means weak
nonlinearities or weak amplitudes of excitation.

Since the approach is based on measuring phases and
amplitudes of signals generated by sinusoidal excitations at
a given frequency, measurements can be repeated continu-
ously and in almost “real time,” thus providing an efficient
tool, e.g., for monitoring early stages during condition-
ing and relaxation or for online measurements. Finally, we
remark that the short measurement time is one of the main
advantages of the proposed approach: during relaxation,
e.g., the first measurement can be taken as fast as after
a couple of seconds from the end of conditioning, which
is to our knowledge faster than any acoustic nonlinear
characterization method in the literature.

APPENDIX A: DERIVATION OF THE SOLUTION
IN x = L

The solution for the displacement field in a finite
medium of length L with free-free boundary conditions is
reported in Eq. (4). When x = L we obtain

u+(x = L, t) =
∞∑

n=1

U0ej [ωt−k(2n−1)L+φ0]e−α(2n−1)L,

u−(x = L, t) =
∞∑

n=1

U0ej [ωt−k(2n−1)L+φ0]e−α(2n−1)L,

u(x = L, t) = 2U0ej (ωt+φ0)
∞∑

n=1

e−jk(2n−1)L−α(2n−1)L.

(A1)

The index n can be redefined to have summation from 0:
m = n − 1. It follows that

u(x = L, t) = 2U0ej (ωt+φ0)
∞∑

m=0

e−jk(2m+1)L−α(2m+1)L,

u(x = L, t) = 2U0ej (ωt+φ0)e−jkL−αL
∞∑

m=0

e−j 2kmL−α2mL

(A2)

Defining

z = e−2jkL−2αL, (A3)
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the summation is a geometric series with |z| < 1. Thus the
series is convergent [32] and

u(x = L, t) = 2U0ej (ωt+φ0)e−jkL−αL 1
1 − z

,

u(x = L, t) = U0ej (ωt+φ0)
2

ejkL+αL − e−jkL−αL ,

u(x = L, t) = U0ej (ωt+φ0)
1

sinh(jkL + αL)
.

(A4)

Defining

q = sinh(jkL + αL),

q = sinh(αL) cos(kL)+ j cosh(αL) sin(kL),
(A5)

we obtain

1
sinh(jkL + αL)

= 1√
cosh2(αL)− cos2(kL)

e−j arctan[tan(kL)/tanh(αL)].

(A6)

Introducing Eq. (A6) into Eq. (A4), we obtain the
displacement field in x = L as

u(x = L, t)= U0√
cosh2(αL)− cos2(kL)

e j (ωt +φ0 − arctan[tan(kL)/tanh(αL)]),

(A7)

as reported in the main text.

APPENDIX B: STRAIN

In the main text, it is chosen to derive the solution in
terms of displacements. However, a similar solution can
be derived for strain:

∂u/∂x ≈ (−jk − α)u(x, t), (B1)

where the approximation is due to neglecting the effects
of viscous terms on phase. In practice, such a choice
is equivalent to redefining the calibration parameters U0
and φ0, without significant modifications to the approach
proposed.

The advantage of an approach based on strains, is that
it allows an easier expression of the free-free bound-
ary conditions and a better physical understanding of the
coefficient U0. Indeed, boundary conditions become

∂u
∂x

= 0 at x = L,

∂u
∂x

= (−jk − α)U0ej (ωt+φ0) at x = 0

The second boundary condition corresponds to that of free-
free boundaries plus the contribution due to the strain
induced by the source transducer.

APPENDIX C: BOUNDARY CONDITIONS

The solution given in the main text is exact for a finite
linear medium with free-free boundary conditions, which
can not be the case of the experimental setup. However,
considering two small and light piezoelectric ultrasonic
transducers bounded to the edges of a 1D sample posi-
tioned horizontally, to avoid gravity effects, and on a soft
surface (foam rubber in our case) or suspended, the bound-
ary conditions are normally considered to approximate
well a free-boundary system (see, e.g., [33–35]). In our
case, we measure the velocity and Q factor for the Berea
sandstone sample independently on the use of our tech-
nique and find that the obtained measurements agree well
with those obtained assuming free-free boundary condi-
tions in our model, as shown in Fig. 3. Thus, even though
small effects due to the transducer’s mass might be present,
we can consider them negligible.

Even in the case of other boundary conditions, it is
possible to modify the approach, considering a reflection
coefficient R and a phase change 
� due to boundaries.
Considering only the u+ term, Eq. (4) can be rewritten as

u+(x, t) =
∞∑

n=1

U0R2(n−1)e j {ωt−k[2(n−1)L+x]+2(n−1)
�+φ0}e−α[2(n−1)L+x],

which can still be solved to obtain a sinusoidal solution. In
fact, in x = L we obtain

u+(x = L, t) = e−j
�−log(R)
∞∑

n=1

U0e j {ωt−k′[(2n−1)L]+φ0}e−α′[2(n−1)L],

where

k′ = k −
�/L,

α′ = α − log(R)/L.
(C1)

The sum is in most cases still convergent [since log
(R) < 0], albeit with more complex calculations. Further-
more, the presence of the two additional unknown param-
eters R and 
�, makes the procedure more complex, e.g.,
requiring to obtain them by fitting the linear values of
velocity and Q factor, but still feasible.

APPENDIX D: WAVE NUMBER AND DAMPING
COEFFICIENT DETERMINATION

In the main text, equations are reported linking mea-
sured phases and amplitudes of the signal to wave number
k and damping α:

A = U0√
cosh2(αL)− cos2(kL)

, (D1)

� = φ0 + φ = φ0 − arctan
[

tan(kL)
tanh(αL)

]
. (D2)
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These equations can be easily inverted. Introducing the
new variables a = tanh(αL) and b = tan(kL), we obtain

A2

U2
0

×
(

1
1 − a2 + 1

1 + b2

)
= 1,

b = −a tan (�− φ0) = −a tan (
�) .

(D3)

Substituting b in the first equation, we have a second-order
equation in a2:

a4 sin2
�+ a2
[

A2

U2
0

+ cos(2
�)
]

− cos2
� = 0

(D4)

The equations reported in the text follows from the solution
of Eq. (D4).
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