G. M. Sessler, Silicon microphones, Journal of the Audio Engineering Society, vol.44, issue.1/, pp.16-22, 1996.

C. Guianvarc'h, R. M. Gavioso, G. Benedetto, L. Pitre, and M. Bruneau, Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators, Review of Scientific Instruments, vol.80, issue.7, p.74901, 2009.

M. Bruneau, A. Bruneau, and P. Dupire, A model for rectangular miniaturized microphones, Acta acustica, vol.3, issue.3, pp.275-282, 1995.

P. Honzík and M. Bruneau, Acoustic fields in thin fluid layers between vibrating walls and rigid boundaries: integral method, Acta Acustica united with Acustica, vol.101, issue.4, pp.859-862, 2015.

S. Fukui and R. Kaneko, Analysis of ultra-thin gas film lubrication based on linearized boltzmann equation: First report-derivation of a generalized lubrication equation including thermal creep flow, Journal of Tribology, vol.110, pp.253-261, 1988.

L. Desvillettes and S. Lorenzani, Sound wave resonances in micro-electro-mechanical systems devices vibrating at high frequencies according to the kinetic theory of gases, Physics of Fluids, vol.24, issue.9, pp.1-24, 2012.

L. Wu, J. M. Reese, and Y. Zhang, Oscillatory rarefied gas flow inside rectangular cavities, vol.748, pp.350-367, 2014.

T. Veijola, H. Kuisma, J. Lahdenperä, and T. Ryhänen, Equivalent-circuit model of the squeezed gas film in a silicon accelerometer, Sensors and Actuators A: Physical, vol.48, issue.3, pp.239-248, 1995.

A. H. Nayfeh and M. I. Younis, A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping, Journal of Micromechanics and Microengineering, vol.14, issue.2, p.170, 2003.

T. Veijola and A. Lehtovuori, Numerical and analytical modelling of trapped gas in micromechanical squeeze-film dampers, Journal of Sound and Vibration, vol.319, issue.1, pp.606-621, 2009.

T. Verdot, E. Redon, K. Ege, J. Czarny, C. Guianvarc'h et al., Microphone with planar nano-gauge detection: fluid-structure coupling including thermoviscous effects, Acta Acustica united with Acustica, vol.102, issue.3, pp.517-529, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01310567

R. B. Darling, C. Hivick, and J. Xu, Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a green's function approach, Sensors and Actuators A: Physical, vol.70, issue.1, pp.32-41, 1998.

M. Bruneau, A. Bruneau, Z. ?kvor, and P. Lotton, An equivalent network modelling the strong coupling between a vibrating membrane and a fluid film, Acta Acustica, vol.2, issue.C5, pp.223-232, 1994.

M. Bruneau and T. Scelo, Fundamentals of acoustics, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00078957

P. M. Morse and K. U. Ingard, Theoretical acoustics, 1968.

A. W. Leissa, Vibration of plates, Scientific and Technical Information Division, National Aeronautics and Space Administration, 1969.

T. Naik, E. K. Longmire, and S. C. Mantell, Dynamic response of a cantilever in liquid near a solid wall, Sensors and Actuators A: physical, vol.102, issue.3, pp.240-254, 2003.

N. Joly, Finite element modeling of thermoviscous acoustics on adapted anisotropic meshes: Implementation of the particle velocity and temperature variation formulation, Acta acustica united with acustica, vol.95, issue.1, pp.102-114, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02460439

W. Kampinga, Y. Wijnant, and A. Boer, An efficient finite element model for viscothermal acoustics, Acta Acustica united with Acustica, vol.97, issue.4, pp.618-631, 2011.

M. J. Jensen and E. S. Olsen, Virtual prototyping of condenser microphones using the finite element method for detailed electric, mechanic, and acoustic characterization, Proceedings of Meetings on Acoustics, vol.19, p.30039, 2013.

. Comsol-multiphysics, Acoustics Module User's Guide, 2015.

. Comsol-multiphysics, Structural Mechanics Module User's Guide, 2015.

C. Laum and . Umr, , p.6613