Manipulating acoustic wave reflection by a nonlinear elastic metasurface - Le Mans Université Accéder directement au contenu
Article Dans Une Revue Journal of Applied Physics Année : 2018

Manipulating acoustic wave reflection by a nonlinear elastic metasurface

Résumé

The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of converting, during the reflection process, most of the fundamental incoming wave energy into the second harmonic wave is shown, both theoretically and numerically, by means of a proper design of the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochromatic source are compared with time domain simulations for a wave packet source. This protocol allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as exploring the limits of the operating frequency bandwidth. The reported methodology can be applied to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear reflection processes.
Fichier non déposé

Dates et versions

hal-02536823 , version 1 (08-04-2020)

Identifiants

Citer

Xinxin Guo, Vitali Goussev, Katia Bertoldi, Vincent Tournat. Manipulating acoustic wave reflection by a nonlinear elastic metasurface. Journal of Applied Physics, 2018, 123 (12), pp.124901. ⟨10.1063/1.5015952⟩. ⟨hal-02536823⟩
76 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More