R. S. Kuipers, D. J. De-graaf, M. F. Luxwolda, M. H. Muskiet, D. A. Dijck-brouwer et al., Saturated fat, carbohydrates and cardiovascular disease, Neth. J. Med, vol.69, pp.372-378, 2011.

C. D. Byrne and G. Targher, NAFLD: A multisystem disease, J. Hepatol, vol.62, pp.47-64, 2015.

J. P. Luyendyk and G. L. Guo, Steatosis DeLIVERs high-sensitivity C-reactive protein, Arterioscler. Thromb. Vasc. Biol, vol.31, pp.1714-1715, 2011.

J. D. Browning, L. S. Szczepaniak, R. Dobbins, P. Nuremberg, J. D. Horton et al., Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity, Hepatology, vol.40, pp.1387-1395, 2004.

A. Lonardo, S. Ballestri, G. Marchesini, P. Angulo, and P. Loria, Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome, Dig. Liver Dis, vol.47, pp.181-190, 2015.

N. Alkhouri, E. Lawitz, M. Noureddin, R. Defronzo, and G. I. Shulman, GS-0976 (Firsocostat): An investigational liver-directed Acetyl-CoA Carboxylase (ACC) inhibitor for the treatment of non-alcoholic steatohepatitis (NASH), Expert Opin. Inv. Drug, vol.29, pp.135-141, 2020.

F. Wilfling, J. T. Haas, T. C. Walther, and R. V. Jr, Lipid droplet biogenesis. COCEBI, vol.29, pp.39-45, 2014.

R. Gutierrez-juarez, Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance, J. Clin. Invest, vol.116, pp.1686-1695, 2006.

A. Kotronen, T. Seppanen-laakso, J. Westerbacka, T. Kiviluoto, J. Arola et al., Hepatic Stearoyl-CoA Desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver, Diabetes, vol.58, pp.203-208, 2009.

H. Tilg, A. R. Moschen, and M. Roden, Nat. Rev. Gastroenterol. Hepatol, vol.14, pp.32-42, 2017.

A. Pawar, D. Botolin, D. J. Mangelsdorf, and D. B. Jump, The role of liver X receptor-? in the fatty acid regulation of hepatic gene expression, J. Biol. Chem, vol.278, pp.40736-40743, 2003.

S. Spahis, E. Delvin, J. Borys, and E. Levy, Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis, Antioxid. Redox Signal, vol.26, pp.519-541, 2017.

M. H. Spooner and D. B. Jump, Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: Where do we stand?, Curr. Opin. Clin. Nutr, vol.22, pp.103-110, 2019.

D. Tobin, M. Brevik-andersen, Y. Qin, J. K. Innes, and P. C. Calder, Evaluation of a high Concentrate Omega-3 for correcting the Omega-3 fatty acid Nutritional Deficiency In Non-alcoholic fatty liver disease (CONDIN), Nutrients, vol.10, 1126.

D. B. Jump, K. A. Lytle, C. M. Depner, and S. Tripathy, Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease, Pharmacol. Ther, vol.181, pp.108-125, 2018.

C. Bertrand, A. Pignalosa, E. Wanecq, C. Rancoule, A. Batut et al., Castan-Laurell, I. E?ects of dietary Eicosapentaenoic Acid (EPA) supplementation in high-fat fed mice on lipid metabolism and apelin/APJ system in skeletal muscle, PLoS ONE, vol.8, 2013.

H. Poudyal, S. K. Panchal, L. C. Ward, and L. Brown, E?ects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats, J. Nutr. Biochem, vol.24, pp.1041-1052, 2013.

P. C. Calder, Marine omega-3 fatty acids and inflammatory processes: E?ects, mechanisms and clinical relevance, BBA, vol.1851, pp.469-484, 2015.

M. Kunesová, R. Braunerová, P. Hlavat?, E. Tvrzická, B. Stanková et al., The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women, Physiol. Res, vol.55, pp.63-72, 2006.

K. Albracht-schulte, N. S. Kalupahana, L. Ramalingam, S. Wang, S. M. Rahman et al., Moustaid-Moussa, N. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update, J. Nutr. Biochem, vol.58, pp.1-16, 2018.

K. Albracht-schulte, S. Gonzalez, A. Jackson, S. Wilson, L. Ramalingam et al., Eicosapentaenoic acid improves hepatic metabolism and reduces inflammation independent of obesity in high-fat-fed mice and in HepG2 Cells, Nutrients, vol.11, 2019.

E. Abedi and M. A. Sahari, Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties, Food Sci. Nutr, vol.2, pp.443-463, 2014.

D. Martins, L. Custódio, L. Barreira, H. Pereira, R. Ben-hamadou et al., Abu-Salah, K. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae, Mar. Drugs, vol.11, pp.2259-2281, 2013.

N. Lakra, S. Mahmood, A. Marwal, N. M. Sudheep, and K. Anwar, Bioengineered plants can be an alternative source of omega-3 fatty acids for human health, Plant and Human Health, vol.2, pp.361-382, 2019.

E. Ryckebosch, C. Bruneel, R. Termote-verhalle, K. Goiris, K. Muylaert et al., Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil, Food Chem, vol.160, pp.393-400, 2014.

S. Sakai, T. Sugawara, K. Matsubara, and T. Hirata, Inhibitory e?ect of carotenoids on the degranulation of mast cells via suppression of antigen-induced aggregation of high a nity IgE receptors, J. Biol. Chem, vol.284, pp.28172-28179, 2009.

M. Gammone and N. Orazio, Anti-obesity activity of the marine carotenoid fucoxanthin, Mar. Drugs, vol.13, pp.2196-2214, 2015.

R. Sathasivam and J. Ki, A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries, Mar. Drugs, vol.16, 2018.

C. Sansone and C. Brunet, Promises and challenges of microalgal antioxidant production, vol.8, 0199.

D. Martino, A. Meichenin, A. Shi, J. Pan, K. Bowler et al., Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions, J. Phycol, vol.43, pp.992-1009, 2007.

M. M. Rebolloso-fuentes, A. Navarro-pérez, J. J. Ramos-miras, and J. L. Guerero, Biomass nutrient profiles of the microalga Phaeodactylum tricornutum, J. Food Biochem, vol.25, pp.57-76, 2007.

S. M. Kim, Y. Jung, O. Kwon, K. H. Cha, B. Um et al., A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum, Appl. Biochem. Biotechnol, vol.166, pp.1843-1855, 2012.

M. Koller, A. Muhr, and G. Braunegg, Microalgae as versatile cellular factories for valued products, Algal Res, vol.6, pp.52-63, 2014.

X. Wan, T. Li, D. Liu, Y. Chen, Y. Liu et al., E?ect of marine microalga Chlorella pyrenoidosa ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats, Mar. Drugs, vol.16, 2018.

J. Yu, Y. Ma, J. Sun, L. Ran, Y. Li et al., Microalgal oil from Schizochytrium sp. prevents HFD-induced abdominal fat accumulation in mice, J. Am. Coll. Nutr, vol.36, pp.347-356, 2017.

S. Y. Koo, J. Hwang, S. Yang, J. Um, K. W. Hong et al., Anti-obesity e?ect of standardized extract of microalga Phaeodactylum tricornutum containing fucoxanthin, Mar. Drugs, vol.17, p.311, 2019.

C. Mayer, M. Côme, L. Ulmann, G. Chini-zittelli, C. Faraloni et al., Preventive e?ects of the marine microalga Phaeodactylum tricornutum, used as a food supplement, on risk factors associated with metabolic syndrome in Wistar rats, Nutrients, vol.11, 1069.

W. Cui, S. L. Chen, and K. Hu, Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells, Am. J. Transl. Res, vol.2, pp.95-104, 2010.

T. Goto, N. Takahashi, S. Kato, K. Egawa, S. Ebisu et al., Phytol directly activates peroxisome proliferator-activated receptor ? (PPAR?) and regulates gene expression involved in lipid metabolism in PPAR?-expressing HepG2 hepatocytes, Biochem. Biophys. Res. Commun, vol.337, pp.440-445, 2005.

Y. Youn and Y. Kim, Inhibitory e?ects of Citrus unshiu pericarpium extracts on palmitate-induced lipotoxicity in HepG2 cells, Food Sci. Biotechnol, vol.25, pp.1709-1717, 2016.

S. Rial, G. Ravaut, T. Malaret, K. Bergeron, and C. Mounier, Hexanoic, octanoic and decanoic acids promote basal and insulin-induced phosphorylation of the Akt-mTOR axis and a balanced lipid metabolism in the HepG2 hepatoma cell line, Molecules, vol.23, 2018.

Z. Ma, H. Liu, W. Wang, S. Guan, J. Yi et al., Paeoniflorin suppresses lipid accumulation and alleviates insulin resistance by regulating the Rho kinase/IRS-1 pathway in palmitate-induced HepG2Cells, Biomed. Pharmacother, vol.90, pp.361-367, 2017.

Y. Zang, L. Fan, J. Chen, R. Huang, and H. Qin, Improvement of lipid and glucose metabolism by capsiate in palmitic acid-treated HepG2 cells via activation of the AMPK/SIRT1 signaling pathway, J. Agric. Food Chem, vol.66, pp.6772-6781, 2018.

M. Ishii, A. Maeda, S. Tani, and M. Akagawa, Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules, Arch. Biochem. Biophys, vol.566, pp.26-35, 2015.

U. Neumann, F. Derwenskus, V. Flaiz-flister, U. Schmid-staiger, T. Hirth et al., Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro, Antioxidants, vol.8, p.183, 2019.

Y. Kang, J. Park, S. K. Jung, and Y. H. Chang, Synthesis, characterization, and functional properties of chlorophylls, pheophytins, and Zn-pheophytins, Food Chem, vol.245, pp.943-950, 2018.

W. J. Adeyemi and L. A. Olayaki, Diclofenac -induced hepatotoxicity: Low dose of omega-3 fatty acids have more protective e?ects, Toxicol. Rep, vol.5, pp.90-95, 2018.

S. M. Gonzalez, K. M. Albracht-schulte, L. Ramalingam, N. S. Kalupahana, and N. Moustaid-moussa, Mechanisms mediating e?ects of eicosapentaenoic acid in hepatic steatosis in high fat fed mice and in HepG2 hepatoma Cells, vol.31, pp.646-53, 2017.

Y. Yang, L. Du, M. Hosokawa, K. Miyashita, Y. Kokubun et al., Fatty acid and lipid class composition of the microalga Phaeodactylum tricornutum, J. Oleo. Sci, vol.66, pp.363-368, 2017.

M. Kohjima, M. Enjoji, N. Higuchi, M. Kato, K. Kotoh et al., Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease, Int. J. Mol. Med, vol.20, pp.351-358, 2007.

M. S. Strable and J. M. Ntambi, Genetic control of de novo lipogenesis: Role in diet-induced obesity, Crit. Rev. Biochem. Mol, vol.45, pp.199-214, 2010.

E. Sik-um and Y. C. Kim, E?ect of Samhwangsasim-tang and Daehwanghwangryunsasim-tang on palmitate-induced lipogenesis in HepG2 cells, J. Korean Med, vol.37, pp.62-76, 2016.

J. Lee and T. P. Carr, Dietary fatty acids regulate acyl-CoA: Cholesterol acyltransferase and cytosolic cholesteryl ester hydrolase in hamsters, J. Nutr, vol.134, pp.3239-3244, 2004.

O. Rom, G. Xu, Y. Guo, Y. Zhu, H. Wang et al., Nitro-fatty acids protect against steatosis and fibrosis during development of nonalcoholic fatty liver disease in mice, vol.41, pp.62-72, 2019.

W. S. Jang and S. Y. Choung, Antiobesity e?ects of the ethanol extract of Laminaria japonica Areshoung in high-fat-diet-induced obese rat. Evid. Based Complementary Altern, pp.1-17, 2013.

L. Tong, Acetyl-coenzyme A carboxylase: Crucial metabolic enzyme and attractive target for drug discovery, CMLS, vol.62, pp.1784-1803, 2005.

R. De-vries, S. E. Borggreve, and R. P. Dullaart, Role of lipases, lecithin: Cholesterol acyltransferase and cholesteryl ester transfer protein in abnormal high density lipoprotein metabolism in insulin resistance and type 2 diabetes mellitus, Clin. Lab, vol.49, pp.601-613, 2003.

D. Eberlé, B. Hegarty, P. Bossard, P. Ferré, and F. Foufelle, SREBP transcription factors: Master regulators of lipid homeostasis, Biochimie, vol.86, pp.839-848, 2004.

H. E. Bays, A. P. Tighe, R. Sadovsky, and M. H. Davidson, Prescription omega-3 fatty acids and their lipid e?ects: Physiologic mechanisms of action and clinical implications, Expert Rev. Cardiovasc. Ther, vol.6, pp.391-409, 2008.

A. Lamaziere, C. Wolf, U. Barbe, P. Bausero, and F. Visioli, Lipidomics of hepatic lipogenesis inhibition by omega 3 fatty acids, Prostag. Leukotr. Ess, vol.88, pp.149-154, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01376853

G. S. Masterton, J. N. Plevris, and P. C. Hayes, Review article: Omega-3 fatty acids -a promising novel therapy for non-alcoholic fatty liver disease: Review: Omega-3 fatty acids -a novel therapy for NAFLD?, Aliment. Pharm. Ther, vol.31, pp.679-692, 2009.

Y. Chang, Y. Chen, W. Huang, and C. Liou, Fucoxanthin attenuates fatty acid-induced lipid accumulation in FL83B hepatocytes through regulated Sirt1/AMPK signaling pathway, Biochem. Biophys. Res. Commun, vol.495, pp.197-203, 2018.

H. J. Park, M. K. Lee, Y. B. Park, Y. C. Shin, and M. S. Choi, Beneficial e?ects of Undaria pinnatifida ethanol extract on diet-induced-insulin resistance in C57BL/6J mice, Food Chem. Toxicol, vol.49, pp.727-733, 2011.

H. Maeda, M. Hosokawa, T. Sashima, K. Funayama, and K. Miyashita, Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity e?ect through UCP1 expression in white adipose tissues, vol.332, pp.392-397, 2005.

A. Gille, B. Stojnic, F. Derwenskus, A. Trautmann, U. Schmid-staiger et al., A lipophilic fucoxanthin-rich Phaeodactylum tricornutum extract ameliorates e?ects of diet-induced obesity in C57BL/6J mice, Nutrients, vol.11, 2019.

Y. Ma, Z. Wang, M. Zhu, C. Yu, Y. Cao et al., Increased lipid productivity and TAG content in Nannochloropsis by heavy-ion irradiation mutagenesis, Bioresour. Technol, vol.136, pp.360-367, 2013.

T. Li, J. Xu, H. Wu, G. Wang, S. Dai et al., A saponification method for chlorophyll removal from microalgae biomass as oil feedstock, Mar. Drugs, vol.14, 2016.

L. Van-heukelem and C. S. Thomas, Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments, J. Chromatogr. A, vol.910, pp.31-49, 2001.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, Sample Availability: Not available. © 2020 by the authors. Licensee MDPI