F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin, vol.68, pp.394-424, 2018.

F. Cardoso, S. Kyriakides, S. Ohno, F. Penault-llorca, P. Poortmans et al., Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up ?, Ann. Oncol, vol.30, pp.1194-1220, 2019.

R. K. Saini and Y. Keum, Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance-A review, Life Sci, vol.203, pp.255-267, 2018.

F. Shahidi and P. Ambigaipalan, Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits, Annu. Rev. Food Sci. Technol, vol.9, pp.345-381, 2018.

B. Chénais and V. Blanckaert, The Janus Face of Lipids in Human Breast Cancer: How Polyunsaturated Fatty Acids A?ect Tumor Cell Hallmarks, Int. J. Breast Cancer, 2012.

M. D'archivio, B. Scazzocchio, R. Vari, C. Santangelo, C. Giovannini et al., Recent Evidence on the Role of Dietary PUFAs in Cancer Development and Prevention, Curr. Med. Chem, vol.25, pp.1818-1836, 2018.

R. D. Freitas and M. M. Campos, Protective E?ects of Omega-3 Fatty Acids in Cancer-Related Complications, Nutrients, vol.11, p.945, 2019.

S. Marventano, P. Kolacz, S. Castellano, F. Galvano, S. Buscemi et al., A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter?, Int. J. Food Sci. Nutr, vol.66, pp.611-622, 2015.

S. F. Nabavi, S. Bilotto, G. L. Russo, I. E. Orhan, S. Habtemariam et al., Omega-3 polyunsaturated fatty acids and cancer: Lessons learned from clinical trials, Cancer Metastasis Rev, vol.34, pp.359-380, 2015.

S. Serini and G. Calviello, Long-chain omega-3 fatty acids and cancer: Any cause for concern?, Curr. Opin. Clin. Nutr. Metab. Care, vol.21, pp.83-89, 2018.

L. Ulmann, V. Mimouni, V. Blanckaert, V. Pasquet, B. Schoefs et al., The polyunsaturated fatty acids from microalgae as potential sources for health and disease, In Polyunsaturated Fatty Acids
URL : https://hal.archives-ouvertes.fr/hal-01906200

A. Catala and . Ed, , pp.23-43, 2014.

L. Ulmann, V. Blanckaert, V. Mimouni, M. X. Andersson, B. Schoefs et al., Microalgal Fatty Acids and Their Implication in Health and Disease. Mini Rev, vol.17, pp.1112-1123, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02303535

V. C. Vaughan, M. R. Hassing, and P. A. Lewandowski, Marine polyunsaturated fatty acids and cancer therapy, Br. J. Cancer, vol.108, pp.486-492, 2013.

M. Volpato and M. A. Hull, Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer, Cancer Metastasis Rev, vol.37, pp.545-555, 2018.

J. Liu and D. Ma, The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer, Nutrients, vol.6, pp.5184-5223, 2014.

N. Shapira, The potential contribution of dietary factors to breast cancer prevention, Eur. J. Cancer Prev, vol.26, pp.385-395, 2017.

O. Zanoaga, A. Jurj, L. Raduly, R. Cojocneanu-petric, E. Fuentes-mattei et al., Berindan-Neagoe, I. Implications of dietary !-3 and !-6 polyunsaturated fatty acids in breast cancer, Exp. Ther. Med, vol.15, pp.1167-1176, 2018.

N. Terme, B. Chénais, M. Fournière, M. Bourgougnon, and G. Bedoux, Algal derived functional lipids and their role in promoting health. In Recent Advancements in Micro and Macroalgal Processing: Food and Health Perspectives, p.2020

D. D'eliseo and F. Velotti, Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy, J. Clin. Med, vol.5, 2016.

K. Jing, T. Wu, and K. Lim, Omega-3 polyunsaturated fatty acids and cancer, Anticancer Agents Med. Chem, vol.13, pp.1162-1177, 2013.

M. Moloudizargari, E. Mortaz, M. H. Asghari, I. M. Adcock, F. A. Redegeld et al., E?ects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: A systematic review, Oncotarget, vol.9, pp.11858-11875, 2018.

E. Song and H. Kim, Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells, Int. J. Mol. Sci, vol.17, 1257.

L. Vandersluis, V. Mazurak, S. Damaraju, and C. Field, Determination of the Relative E cacy of Eicosapentaenoic Acid and Docosahexaenoic Acid for Anti-Cancer E?ects in Human Breast Cancer Models, Int. J. Mol. Sci, vol.18, 2017.

S. Kim, K. Jing, S. Shin, S. Jeong, S. Han et al., !3-polyunsaturated fatty acids induce cell death through apoptosis and autophagy in glioblastoma cells: In vitro and in vivo, Oncol. Rep, vol.39, pp.239-246, 2018.

E. Yun, K. Song, S. Shin, S. Kim, J. Heo et al., Docosahexaenoic acid suppresses breast cancer cell metastasis by targeting matrix-metalloproteinases, Oncotarget, vol.7, pp.49961-49971, 2016.

W. Zheng, J. Li, X. Wang, Y. Yuan, J. Zhang et al., E?ects of Antarctic krill docosahexaenoic acid on MCF-7 cell migration and invasion induced by the interaction of CD95 with caveolin-1, Life Sci, vol.192, pp.270-277, 2018.

J. X. Kang, Fat-1 transgenic mice: A new model for omega-3 research, Prostaglandins Leukot. Essent. Fatty Acids, vol.77, pp.263-267, 2007.

P. Corsetto, I. Colombo, J. Kopecka, A. Rizzo, and C. Riganti, !-3 Long Chain Polyunsaturated Fatty Acids as Sensitizing Agents and Multidrug Resistance Revertants in Cancer Therapy, Int. J. Mol. Sci, vol.18, 2017.

R. A. Siddiqui, K. A. Harvey, Z. Xu, E. M. Bammerlin, C. Walker et al., Docosahexaenoic acid: A natural powerful adjuvant that improves e cacy for anticancer treatment with no adverse e?ects, BioFactors, vol.37, pp.399-412, 2011.

A. Manni, K. El-bayoumy, and H. Thompson, Docosahexaenoic Acid in Combination with Dietary Energy Restriction for Reducing the Risk of Obesity Related Breast Cancer, Int. J. Mol. Sci, vol.19, 2017.

S. Serini, R. Ottes-vasconcelos, R. Nascimento-gomes, and G. Calviello, Protective E?ects of !-3 PUFA in Anthracycline-Induced Cardiotoxicity: A Critical Review, Int. J. Mol. Sci, vol.18, 2017.

H. Xue, W. Ren, M. Denkinger, E. Schlotzer, and P. E. Wischmeyer, Nutrition Modulation of Cardiotoxicity and Anticancer E cacy Related to Doxorubicin Chemotherapy by Glutamine and !-3 Polyunsaturated Fatty Acids, J. Parenter. Enter. Nutr, vol.40, pp.52-66, 2016.

M. Rabé, S. Dumont, A. Álvarez-arenas, H. Janati, J. Belmonte-beitia et al., Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma, Cell Death Dis, vol.11, 2020.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

G. R. Ravacci, M. M. Brentani, T. C. Tortelli, R. S. Torrinhas, J. R. Santos et al., Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells, Biomed Res. Int, vol.838652, 2015.

G. Gelsomino, P. A. Corsetto, I. Campia, G. Montorfano, J. Kopecka et al., Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition, Mol. Cancer, vol.12, 2013.

C. H. Jakobsen, G. L. Størvold, H. Bremseth, T. Follestad, K. Sand et al., DHA induces ER stress and growth arrest in human colon cancer cells: Associations with cholesterol and calcium homeostasis, J. Lipid Res, vol.49, pp.2089-2100, 2008.

J. Li, K. Takaishi, W. Cook, S. K. Mccorkle, and R. H. Unger, Insig-1 "brakes" lipogenesis in adipocytes and inhibits di?erentiation of preadipocytes, Proc. Natl. Acad. Sci, vol.100, pp.9476-9481, 2003.

Y. Han, Z. Hu, A. Cui, Z. Liu, F. Ma et al., Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene, Nat. Commun, vol.10, 2019.

M. C. Sugden and M. J. Holness, Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs, Am. J. Physiol. Endocrinol. Metab, vol.284, pp.855-862, 2003.

W. M. Casey, T. Brodie, L. Yoon, H. Ni, H. L. Jordan et al., Correlation analysis of gene expression and clinical chemistry to identify biomarkers of skeletal myopathy in mice treated with PPAR agonist GW610742X, Biomarkers, vol.13, pp.364-376, 2008.

T. Imanishi, T. Hano, T. Sawamura, S. Takarada, and I. Nishio, Oxidized low density lipoprotein potentiation of Fas-induced apoptosis through lectin-like oxidized-low density lipoprotein receptor-1 in human umbilical vascular endothelial cells, Circ. J, vol.66, pp.1060-1064, 2002.

S. Kuniyoshi, Y. Miki, A. Sasaki, E. Iwabuchi, K. Ono et al., The significance of lipid accumulation in breast carcinoma cells through perilipin 2 and its clinicopathological significance, Pathol. Int, vol.69, pp.463-471, 2019.

C. Sztalryd and D. L. Brasaemle, The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, vol.1862, pp.1221-1232, 2017.

A. M. Giudetti, S. De-domenico, A. Ragusa, P. Lunetti, A. Gaballo et al., A specific lipid metabolic profile is associated with the epithelial mesenchymal transition program, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, vol.1864, pp.344-357, 2019.

U. R. Chowdhury, R. S. Samant, O. Fodstad, and L. A. Shevde, Emerging role of nuclear protein 1 (NUPR1) in cancer biology, Cancer Metastasis Rev, vol.28, pp.225-232, 2009.

D. W. Clark, A. Mitra, R. A. Fillmore, W. G. Jiang, R. S. Samant et al., NUPR1 interacts with p53, transcriptionally regulates p21 and rescues breast epithelial cells from doxorubicin-induced genotoxic stress, Curr. Cancer Drug Targets, vol.8, pp.421-430, 2008.

M. Katoh, H. Nakagama, and . Receptors, Cancer Biology and Therapeutics. Med. Res. Rev, vol.34, pp.280-300, 2014.

C. G. L'hôte and M. A. Knowles, Cell responses to FGFR3 signalling: Growth, di?erentiation and apoptosis, Exp. Cell Res, vol.304, pp.417-431, 2005.

E. G. Colicino and H. Hehnly, Regulating a key mitotic regulator, polo-like kinase 1 (PLK1), Cytoskeleton, vol.75, pp.481-494, 2018.

S. Kumar, A. R. Sharma, G. Sharma, C. Chakraborty, and J. Kim, PLK-1: Angel or devil for cell cycle progression, Biochim. Biophys. Acta Rev. Cancer, vol.1865, pp.190-203, 2016.

D. J. Schultz, A. Krishna, S. L. Vittitow, N. Alizadeh-rad, P. Muluhngwi et al., Transcriptomic response of breast cancer cells to anacardic acid, Sci. Rep, vol.8, p.8063, 2018.

X. Chen, L. Huang, Y. Yang, S. Chen, J. Sun et al., ASPM promotes glioblastoma growth by regulating G1 restriction point progression and Wnt--catenin signaling, Aging, vol.12, pp.224-241, 2020.

X. Jia, P. Niu, C. Xie, and H. Liu, Long noncoding RNA PXN-AS1-L promotes the malignancy of nasopharyngeal carcinoma cells via upregulation of SAPCD2, Cancer Med, vol.8, pp.4278-4291, 2019.

V. C. Pai, C. Hsu, T. Chan, W. Liao, C. Chuu et al., ASPM promotes prostate cancer stemness and progression by augmenting Wnt-Dvl-3--catenin signaling, Oncogene, vol.38, pp.1340-1353, 2019.

W. Sun, W. Dong, L. Mao, W. Li, J. Cui et al., Overexpression of p42.3 promotes cell growth and tumorigenicity in hepatocellular carcinoma, World J. Gastroenterol, vol.19, pp.2913-2920, 2013.

X. Yuan, Y. Zhang, X. Guan, B. Dong, M. Zhao et al., 3: A promising biomarker for the progression and prognosis of human colorectal cancer, J. Cancer Res. Clin. Oncol, vol.139, pp.1211-1220, 2013.

T. Ord and T. Ord, Mammalian Pseudokinase TRIB3 in Normal Physiology and Disease: Charting the Progress in Old and New Avenues, Curr. Protein Pept. Sci, vol.18, pp.819-842, 2017.

W. Rozpedek, D. Pytel, B. Mucha, H. Leszczynska, J. A. Diehl et al., The Role of the PERK/eIF2?/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress, Curr. Mol. Med, vol.16, pp.533-544, 2016.

B. A. Dombroski, R. R. Nayak, K. G. Ewens, W. Ankener, V. G. Cheung et al., Gene Expression and Genetic Variation in Response to Endoplasmic Reticulum Stress in Human Cells, Am. J. Hum. Genet, vol.86, pp.719-729, 2010.

S. Jeong, D. Y. Kim, S. H. Kang, H. K. Yun, J. L. Kim et al., Docosahexaenoic Acid Enhances Oxaliplatin-Induced Autophagic Cell Death via the ER Stress/Sesn2 Pathway in Colorectal Cancer, Cancers, vol.11, 2019.

H. Samdal, M. A. Sandmoe, L. C. Olsen, E. A. Jarallah, T. S. Høiem et al., Basal level of autophagy and MAP1LC3B-II as potential biomarkers for DHA-induced cytotoxicity in colorectal cancer cells, FEBS J, vol.285, pp.2446-2467, 2018.

J. Shin, Y. Jeon, S. Lee, Y. G. Lee, J. B. Kim et al., Protein-Coupled Receptor 120 Mediates DHA-Induced Apoptosis by Regulating IP3R, ROS and, ER Stress Levels in Cisplatin-Resistant Cancer Cells, Mol. Cells, vol.42, pp.252-261, 2019.

L. S. Okada, C. P. Oliveira, J. T. Stefano, M. A. Nogueira, I. D. Silva et al., Omega-3 PUFA modulate lipogenesis, ER stress, and mitochondrial dysfunction markers in NASH-Proteomic and lipidomic insight, Clin. Nutr, vol.37, pp.1474-1484, 2018.

I. N. Mungrue, J. Pagnon, O. Kohannim, P. S. Gargalovic, and A. J. Lusis, CHAC1/MGC4504 Is a Novel Proapoptotic Component of the Unfolded Protein Response, Downstream of the ATF4-ATF3-CHOP Cascade, J. Immunol, vol.182, pp.466-476, 2009.

M. M. Hopkins, Z. Zhang, Z. Liu, and K. E. Meier, Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid-and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells, J. Clin. Med, vol.5, 2016.

I. V. Davydov, D. Bohmann, P. H. Krammer, and M. Li-weber, Cloning of the cDNA encoding human C/EBP gamma, a protein binding to the PRE-I enhancer element of the human interleukin-4 promoter, Gene, vol.161, pp.271-275, 1995.

Y. Wang, Y. Zhang, Y. Zhu, and P. Zhang, Lipolytic inhibitor G0/G1 switch gene 2 inhibits reactive oxygen species production and apoptosis in endothelial cells, Am. J. Physiol. Cell Physiol, vol.308, pp.496-504, 2015.

C. Welch, M. K. Santra, W. El-assaad, X. Zhu, W. E. Huber et al., Identification of a protein, G0S2, that lacks Bcl-2 homology domains and interacts with and antagonizes Bcl-2, Cancer Res, vol.69, pp.6782-6789, 2009.

N. Chen, N. Nishio, S. Ito, Y. Tanaka, Y. Sun et al., Growth arrest and DNA damage-inducible protein (GADD34) enhanced liver inflammation and tumorigenesis in a diethylnitrosamine (DEN)-treated murine model, Cancer Immunol. Immunother, vol.64, pp.777-789, 2015.

M. C. Hollander, Q. Zhan, I. Bae, and A. J. Fornace, Mammalian GADD34, an Apoptosis-and DNA Damage-inducible Gene, J. Biol. Chem, vol.272, pp.13731-13737, 1997.

M. Moriguchi, T. Watanabe, and M. Fujimuro, Capsaicin Induces ATF4 Translation with Upregulation of CHOP, GADD34 and PUMA, Biol. Pharm. Bull, vol.42, pp.1428-1432, 2019.

F. Du, L. Sun, Y. Chu, T. Li, C. Lei et al., DDIT4 promotes gastric cancer proliferation and tumorigenesis through the p53 and MAPK pathways, Cancer Commun, vol.38, p.45, 2018.

H. Park, H. Park, S. Ro, I. Jang, I. A. Semple et al., Hepatoprotective role of Sestrin2 against chronic ER stress, Nat. Commun, vol.5, p.4233, 2014.

S. H. Bae, S. H. Sung, S. Y. Oh, J. M. Lim, S. K. Lee et al., Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage, Cell Metab, vol.17, pp.73-84, 2013.

T. Fontanil, Y. Mohamedi, M. M. Esteban, A. J. Obaya, and S. Cal, Polyserase-1/TMPRSS9 induces pro-tumor e?ects in pancreatic cancer cells by activation of pro-uPA, Oncol. Rep, vol.31, pp.2792-2796, 2014.

T. Fontanil, S. Álvarez-teijeiro, M. Á. Villaronga, Y. Mohamedi, L. Solares et al., Cleavage of Fibulin-2 by the aggrecanases ADAMTS-4 and ADAMTS-5 contributes to the tumorigenic potential of breast cancer cells, Oncotarget, vol.8, pp.13716-13729, 2017.

S. Mochizuki and Y. Okada, ADAMs in cancer cell proliferation and progression, Cancer Sci, vol.98, pp.621-628, 2007.

V. L. Ha, S. Bharti, H. Inoue, W. C. Vass, F. Campa et al., ASAP3 is a focal adhesion-associated Arf GAP that functions in cell migration and invasion, J. Biol. Chem, vol.283, pp.14915-14926, 2008.

D. Blasio, L. Gagliardi, P. A. Puliafito, A. Primo, and L. , Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) as a Key Regulator of Cell Migration and Cancer Dissemination. Cancers, vol.9, 2017.

N. A. Evensen, C. Kuscu, H. Nguyen, K. Zarrabi, A. Dufour et al., Unraveling the role of KIAA1199, a novel endoplasmic reticulum protein, in cancer cell migration, J. Natl. Cancer Inst, vol.105, pp.1402-1416, 2013.

M. Jami, J. Hou, M. Liu, M. L. Varney, H. Hassan et al., Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness, BMC Cancer, vol.14, 0194.

L. T. Duong, G. A. Wesolowski, P. Leung, R. Oballa, and M. Pickarski, E cacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis, Mol. Cancer Ther, vol.13, pp.2898-2909, 2014.

X. Gu, Y. Peng, Y. Zhao, X. Liang, Y. Tang et al., A novel derivative of artemisinin inhibits cell proliferation and metastasis via down-regulation of cathepsin K in breast cancer, Eur. J. Pharmacol, vol.858, p.172382, 2019.

L. Paglia, L. Listì, A. Caruso, S. Amodeo, V. Passiglia et al., Potential Role of ANGPTL4 in the Cross Talk between Metabolism and Cancer through PPAR Signaling Pathway, PPAR Res, 2017.

A. Cazes, A. Galaup, C. Chomel, M. Bignon, N. Bréchot et al., Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton, Circ. Res, vol.99, pp.1207-1215, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00177171

H. Hsieh, Y. Jou, C. Tung, Y. Tsai, Y. Wang et al., Epigenetic silencing of the dual-role signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment, Oncogene, vol.37, pp.673-686, 2018.

S. Shin, J. Song, B. Hwang, S. L. Park, W. T. Kim et al., Angiopoietin-like protein 4 potentiates DATS-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; involvement of G2/M-phase cell cycle arrest, signaling pathways, and transcription factors-mediated MMP-9 expression, Food Nutr. Res, vol.61, 2017.

T. Adhikary, D. T. Brandt, K. Kaddatz, J. Stockert, S. Naruhn et al., Inverse PPAR / agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion, Oncogene, vol.32, pp.5241-5252, 2013.

J. Tripathy, A. Tripathy, M. Thangaraju, M. Suar, and S. Elangovan, Lipoic acid inhibits the migration and invasion of breast cancer cells through inhibition of TGF signaling, Life Sci, vol.207, pp.15-22, 2018.

I. Pinto, N. Carnier, J. Oyama, L. M. Otoch, J. P. Alcântara et al., Cancer as a Proinflammatory Environment: Metastasis and Cachexia, Mediat. Inflamm, 2015.

Y. M. Fortenberry, S. M. Brandal, G. Carpentier, M. Hemani, and A. P. Pathak, Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis, PLoS ONE, vol.11, 2016.

C. Melzer, J. Von-der-ohe, H. Otterbein, H. Ungefroren, and R. Hass, Changes in uPA, PAI-1, and TGF-Production during Breast Cancer Cell Interaction with Human Mesenchymal Stroma/Stem-Like Cells (MSC), Int. J. Mol. Sci, 1920.

X. Zhang, S. Huang, J. Guo, L. Zhou, L. You et al., Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review), Int. J. Oncol, vol.48, pp.1783-1793, 2016.

S. Gao, H. Sun, L. Li, W. Fu, and W. Jin, UHRF1 promotes breast cancer progression by suppressing KLF17 expression by hypermethylating its promoter, Am. J. Cancer Res, vol.7, pp.1554-1565, 2017.

K. Gumireddy, A. Li, P. A. Gimotty, A. J. Klein-szanto, L. C. Showe et al., KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer, Nat. Cell Biol, vol.11, pp.1297-1304, 2009.

I. A. Ismail, H. S. Kang, H. Lee, J. Kim, and S. Hong, DJ-1 upregulates breast cancer cell invasion by repressing KLF17 expression, Br. J. Cancer, vol.110, pp.1298-1306, 2014.

C. A. Corsa, A. Brenot, W. R. Grither, S. Van-hove, A. J. Loza et al., The Action of Discoidin Domain Receptor 2 in Basal Tumor Cells and Stromal Cancer-Associated Fibroblasts Is Critical for Breast Cancer Metastasis, Cell Rep, vol.15, pp.2510-2523, 2016.

H. Jiang, H. Hu, X. Tong, Q. Jiang, H. Zhu et al., Calcium-binding protein S100P and cancer: Mechanisms and clinical relevance, J. Cancer Res. Clin. Oncol, vol.138, pp.1-9, 2012.

A. Gibadulinova, V. Tothova, J. Pastorek, and S. Pastorekova, Transcriptional regulation and functional implication of S100P in cancer, Amino Acids, vol.41, pp.885-892, 2011.

K. Venkateswaran, A. Verma, A. N. Bhatt, A. Shrivastava, K. Manda et al., Emerging Roles of Calreticulin in Cancer: Implications for Therapy, Curr. Protein Pept. Sci, vol.19, pp.344-357, 2018.

Y. Lu, W. Weng, and H. Lee, Functional roles of calreticulin in cancer biology, Biomed Res. Int, 2015.

E. A. Mazzio, C. A. Lewis, and K. F. Soliman, Transcriptomic Profiling of MDA-MB-231 Cells Exposed to Boswellia Serrata and 3-O-Acetyl-B-Boswellic Acid

. Er/upr, Mediated Programmed Cell Death. Cancer Genom. Proteom, vol.14, pp.409-425, 2017.

M. Schmiech, S. J. Lang, K. Werner, L. J. Rashan, T. Syrovets et al., Comparative Analysis of Pentacyclic Triterpenic Acid Compositions in Oleogum Resins of Di?erent Boswellia Species and Their In Vitro Cytotoxicity against Treatment-Resistant Human Breast Cancer Cells, Molecules, p.2153, 2019.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI