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ABSTRACT
Stealthy hyperuniform point patterns are characterized by a vanishing spatial Fourier transform around the origin of the reciprocal vector
space. The long-range point density fluctuations are suppressed as well in materials consisting of such distribution of scatterers, opening
up opportunities to control waves. Beside wave transport in such structured materials are driven by several elements, such as the acoustic
properties of the host material, the scatterer characteristics, i.e., dimensions or resonant features, and the scatterer distribution patterns. The
effects of these three basic elements on the wave transport properties are usually hard to discriminate. In this work, we analyze the transport
properties of acoustic waves in one-dimensional phononic materials constituted of either non-resonant or resonant scatterers distributed
along stealthy hyperuniform patterns in air. The pattern is controlled by the stealthiness, allowing us to continuously vary from random
phononic materials to phononic crystals. The properties of the scatterers are controlled by their size and/or the resonant frequencies. The
properties of the host material are controlled by the viscothermal losses. Transport properties of stealthy hyperuniform materials are found
to be robust to both the scatterer dimensions and inherent viscothermal losses, while strongly affected by the scatterer resonances, which
introduce sharp dips in the transmission coefficient.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0059928

I. INTRODUCTION

In recent years, the wave physics community has become
increasingly interested in stealthy hyperuniform materials, as the
dispersion relations of these materials exhibit isotropic bandgaps
although they are not periodic.1–13 These isotropic bandgaps have
been exploited to design isotropic filters and free-shaped waveg-
uides with both photonic8,9 and phononic6 hyperuniform materi-
als. Stealthy hyperuniform materials are structured materials whose
scatterer distribution induces the complete suppression of inci-
dent wave scattering for a set of wave vectors in the low fre-
quency limit in the Born approximation.14 In this sense, periodic
structures like photonic15 or phononic16 crystals form a subset of
stealthy hyperuniform materials. Waves propagating in a periodic

medium are either diffracted by Bragg scattering or transmitted, thus
introducing either Bragg peaks or zero regions in the structure fac-
tor.17,18 Nevertheless, hyperuniformity further enhances the sup-
pression of long-range point density fluctuations,11 thus introducing
correlated disorder to control waves. Waves propagating in these
materials with correlated disorder present a phase diagram with
transparent regions, Anderson localization, bandgaps, and wave
diffusion.5 Transport properties in one-dimensional (1D),19 quasi-
one-dimensional,20 and higher dimensional systems have been con-
trolled by correlated disorder, allowing the design of efficient
non-resonant absorbers made of dilute disordered materials for
broadband and omnidirectional waves.21 Systems based on corre-
lated disorder with target combination of transparent and non-
transparent frequency regions for both electromagnetic22 and
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acoustic23,24 waves have also been designed. The properties of
stealthy materials appear to be robust to the losses present under
realistic conditions, demonstrating the potential of correlated disor-
der for practical designs.

Wave transport in such materials is driven by several elements,
such as the scatterer distribution patterns, the scatterer characteris-
tics, i.e., dimensions or resonant features, and the acoustic proper-
ties of the host material. The effects of these three basic elements
on the material transport properties are usually hard to discrimi-
nate. On the one hand, the concept of the stealthy hyperuniformity
introduces an elegant way to design point patterns with finely tun-
able correlations encoded by the degree of stealthiness χ.1–5,8,9,11–13

Asymptotic values of χ correspond to Poisson distribution, χ → 0,
and perfect crystal lattices, χ → 1. More precisely, three structural
regimes are distinguished25,26 when χ increases: disordered, wavy-
crystalline, and crystalline regimes.26 Therefore, a continuous vari-
ation of χ from 0 to 1 induces a continuous change from the ran-
dom point patterns to the periodic ones. On the other hand, the
scatterers used for the design of stealthy hyperuniform materials in
photonic2,8,9 and phononic6 systems are Mie resonators, the reso-
nance of which is fixed close to the Bragg frequency by optimizing
its dimensions for a given material. Recently, the effect of the local
resonances in stealthy hyperuniform acoustic materials has been
preliminary analyzed, showing a strong effect on the wave transport
properties in the transparency band.10 Moreover, in elastodynamics,
the exact expressions for the effective properties of two-phase com-
posites in the long-wavelength (quasistatic) regime via homogenized
constitutive relations that are local in space have been applied to
stealthy hyperuniform materials.27 These local approximations have
been extended beyond the quasistatic regime by postulating nonlo-
cal formulas based on the similarities between electrodynamic and
elastodynamic problems and the rigorous formulation of the nonlo-
cal effective dynamic dielectric properties. By using these nonlocal
microstructure-dependent approximations, it is shown that stealthy
hyperuniform materials are less lossy than their nonhyperuniform
counterparts in the quasistatic regime, and stealthy hyperuniform
media can be perfectly transparent for a wide range of wavenum-
bers.27,28 Finally, the presence of losses that cannot be avoidable in
some types of waves, like the acoustic waves, is only accounted for in
few works.23

In this work, we consider 1D phononic materials that allow us
to easily discriminate such kinds of elements. Therefore, we discuss
the fundamental effect of each element on the opening of bandgaps
in stealthy hyperuniform materials. This allows us, for example, to
place the resonance in different locations of the frequency spec-
trum even also outside of the transparency range and to analyze
the possibly coupling with Bragg interferences, for instance. The
point patterns are created by an optimization algorithm that min-
imizes the structure factor,23,24 related to the scattering properties
of the corresponding systems in the weak scattering approxima-
tion.17,18 The wave transport properties are first analyzed in these
1D phononic structures going from disordered materials to ordered
ones (phononic crystals) when χ varies continuously. We then com-
pare these properties to those of the same 1D phononic materi-
als when either non-resonant or resonant scatterers are located at
the positions of the point patterns. We thus discuss the impact
of the individual scattering properties of the scatterers constitut-
ing the whole material. We point out that the viscothermal losses,

unavoidable in acoustics, are also accounted for. In practice, we use
an air-filled square cross-sectional waveguide in which the stealthy
hyperuniform materials made of non-resonant and resonant scat-
terers are embedded. A non-resonant scatterer consists of a local
narrowing of the waveguide cross section such that it has a non-
resonant behavior in the analyzed range of frequencies. A resonant
scatterer consists of the same non-resonant scatterer but additionally
loaded by a quarter-wavelength resonator.

II. STEALTHY HYPERUNIFORM POINT PATTERNS
A. Structure factor

Let us consider a distribution of N points placed at positions
r⃗i (i = 1, . . . , N) inside a domain Λ in d-dimensions. The structure
factor, S(q⃗), of this point pattern is defined as its spatial Fourier
transform and reads as follows:

S(q⃗) =
1
N

N

∑

i=1

N

∑

j=1
e−iq⃗⋅(r⃗j−r⃗i), (1)

where q⃗ is a vector in the Fourier or reciprocal space.
The hyperuniformity concept can be defined by either the local

number variance σ2
(R) (i.e., the variance in the number of points

within a randomly thrown spherical window of radius R) of the
point pattern in the real space or the structure factor S(q⃗) in the
reciprocal or Fourier space. In this work, we use the structure fac-
tor S(q⃗). Hyperuniform point patterns present a structure factor
vanishing in the long-wavelength limit, i.e., S(q→ 0) = 0, where
q = ∣q⃗∣. One can define the stealthy hyperuniform point patterns as
those presenting a structure factor that vanishes around the origin,
S(Ω) = 0 with Ω the set of q ∈ [0, qc].

To design the stealthy hyperuniform pattern, we use an opti-
mization procedure, which looks for the positions r⃗i that mini-
mizes the structure factor for a target region q < qc as described in
Refs. 23 and 24. The algorithm provides a certain configuration start-
ing from a random distribution. We can introduce a constraint as
minimal distance l between scatterers by the following expression:
∣r⃗i − r⃗j∣ ≥ l ∀i ≠ j. This can be used as a posteriori to build realis-
tic materials with finite size scatterers and thus to analyze the wave
transport properties in realistic conditions. The objective functions
to be simultaneously minimized are a summation of the structure
factor

ϕ(r⃗1, . . . , ⃗rN) = ∑
q<qc

S(q) (2)

and the standard deviation function

Σ =

¿

Á
Á
ÁÀ

1
N − 1∑q<qc

RRRRRRRRRRR

S(q) −
1
N ∑q<qc

S(q)
RRRRRRRRRRR

2

. (3)

We note that the distribution of points obtained by this opti-
mization procedure is equivalent to those obtained by the collective-
coordinate optimization technique described in Refs. 12, 14, 25,
and 26 when l = 0.

B. Stealthiness
In this section, we define the stealthiness, χ, which character-

izes the point pattern that meets the hyperuniformity definition. The
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stealthiness is the ratio of the number M(Ω) of the constrained vec-
tors in Ω to the number of degrees of freedom in the real space
d(N − 1) in d-dimensions (if the system translational degrees of
freedom are removed). We consider a 1D domain of length L and Ω
becomes a segment of length qc. Therefore, M(Ω) = (qcL/2π), and
for N ≫ 1,

χ ≃
qcL

2πN
. (4)

We note that χ is bounded in the domain [0, 1] if qc is in the interval
[0, 2πN/L]. Note also that the expression of χ for higher dimensions
is strongly dependent on the shape of the domain Ω.7,13

Let us define here the set C(χ) that will stand for the set of con-
figurations r⃗i with i = 1, . . . , N that satisfies S(q < 2πNχ/L) = 0. It
is clear that C(χ = 0) includes all the point pattern configurations
and that C(χ1) ⊆ C(χ2) with χ1 ≥ χ2. The local dimension of C(χ) is
given by max(N(1 − 2χ), 1) for 0 ≤ χ < 1.25

C. χ-dependence of the structure factor
In this section, we analyze the structure factor of different

stealthy hyperuniform point patterns generated with different val-
ues of χ. The minimum distance between points is fixed at l = L/100,
i.e., ∣r⃗i − r⃗j∣ ≥ L/100 ∀i ≠ j. Thus, the generated point patterns will
allow the use of finite width scatterers in a second step. We con-
sider N = 25 points as an example. Figure 1(a) shows the map
of the log(S(q⃗)) in terms of χ and qL/2πN. The red continu-
ous line delimits the constrained frequency region imposed by the
value of χ. As demonstrated in Ref. 25, three regions are identified

when N ≫ 1: (i)0 ≤ χ ≲ 1/3, (ii)1/3 ≲ χ < 1/2, and (iii)1/2 ≤ χ < 1.
We note here that the behavior for higher dimensions is similar
with three regions named as “disordered”, “wavy-crystalline,” and
“crystalline.”26 For clarity, we start by analyzing the lower and upper
regions corresponding to the two bounds of χ.

In region (i), 0 ≤ χ ≲ 1/3, the structure factor behavior is
twofold: For q ≤ qc, the values of the structure factor are orders of
magnitude smaller than those for q > qc. As an example of typi-
cal behavior, both the point pattern and the structure factor calcu-
lated for χ = 0.2, as indicated by the horizontal dashed black line in
Fig. 1(a), are depicted in Fig. 1(b). The point patterns in this region
are disordered and the optimization problem is highly degenerated
due to the high dimension of the set C(χ).

In region (iii), 1/2 ≤ χ < 1, the unique solution of the min-
imization problem is the periodic pattern.25 The local dimension
of C(χ) is 1, corresponding to the periodic point distribution.
The structure factor map depicted in Fig. 1(a) presents the Bragg
peaks17,18 at qB = n2πN/L, with n ∈ Z. The point pattern crystalizes
in a 1D array whose periodicity is a = L/N. In this case, q⃗B represents
the well-known vectors of the reciprocal lattice in the reciprocal
space of the periodic system.

In region (ii), 1/3 ≲ χ < 1/2, the point pattern undergoes a
transition from disordered to a periodic pattern and combines the
properties of the other two regions. The structure factor smoothly
mixes the behavior of region (i), in which it is minimized only
for q < qc, and that of region (iii), in which it is minimized for
all q different than those corresponding to Bragg peaks. Therefore,
the structure factor alternates between minimal and non-minimal

FIG. 1. (a) log(S(q⃗)) in terms of χ and qL/2πN for a 1D configuration with N = 25 points in L = 1 m considering the constraint l = L/100 m. A continuous red line
represents the limit imposed by χ. (b)–(d) Examples for χ = 0.2, 0.39, and 0.47, respectively, corresponding to the horizontal dashed lines shown in (a). Vertical thick
dashed black lines in (b)–(d) show the frequency limits imposed by χ. Upper panels in (b)–(d) show the corresponding stealthy hyperuniform point patterns.
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values. To illustrate this dynamic, the point distribution and the
structure factor for χ = 0.39 and χ = 0.47, as indicated by the two
horizontal dashed black lines in Fig. 1(a), are represented in
Figs. 1(c) and 1(d). For the case χ = 0.39, S(q⃗) is minimum in the
region q < qc, but other minima appear. For χ = 0.47, which is a
value very close to the limit of this region, S(q⃗) presents in addition
smooth alternation of minima and maxima for q > qc.

The structure factor for stealthy hyperuniform point patterns
in the absence of constraint on l is analyzed in the supplementary
material. Its overall behavior is preserved. The three χ-dependent
regions appear at the same limits. However, it should be noticed here
that the minima of S(q) are much clearer than in the constrained
case presented in this section.

III. WAVE TRANSPORT PROPERTIES IN STEALTHY
HYPERUNIFORM PHONONIC MATERIALS

Wave transport is calculated by using the transfer matrix
method as explained in the supplementary material. With the 1D
stealthy hyperuniform acoustic material being an asymmetric and
reciprocal structure, it is successively excited by a plane wave from
one side and then from the other side in order to evaluate the scat-
tering coefficients, i.e., the two reflection coefficients, R+ and R−,
and the transmission coefficient T. The eigenvalues of the transfer
matrix provide the dispersion relation of the material, the supercell
of which is composed of N scatterers arranged on the stealthy hyper-
uniform pattern. Problems are solved with and without viscothermal
losses. Losses are accounted for via effective complex and frequency
dependent density and bulk modulus as given in Ref. 29.

A. 1D stealthy hyperuniform acoustic materials
We consider a 1D stealthy acoustic material consisting of an

air-filled waveguide of square cross section presenting N = 25 scat-
terers. These scatterers are either non-resonant, made of identical
rectangular cross section scatterers (reduction of the main wave-
guide section along a single direction), or resonant, made of these
rectangular cross section scatterers additionally loaded by identical
quarter-wavelength resonators (see Fig. 2 for details). The waveguide

FIG. 2. Sketches of (a) the non-resonant scatterer made of a rectangular cross
section tube width W and height hd = ζdW and length ld and (b) the resonant
scatterer where quarter-wavelength resonators of radius Rq and length lq load
the non-resonant scatterer. These scatterers will be located at the position xi
given by the stealthy hyperuniform point patterns forming the stealthy hyperuniform
materials.

side W is chosen such that only plane waves propagate, i.e., the fre-
quencies are lower than the first cutoff frequency of the waveguide.
The rectangular cross section scatterer consists in a reduction of the
waveguide cross section along a single direction of thickness ld ≡ l;
therefore, the rectangular cross section scatterer presents a width W
and height hd = ζd ×W, where ζd ≤ 1 is the height (section) reduc-
tion ratio. The quarter-wavelength resonator consists in a cylindrical
tube of radius Rq = ld/4 and length lq. Its resonance frequency is
fs ≃ cq/4lq, where cq is the sound speed of the fluid in the cylindri-
cal tube. The scatterers are arranged on the stealthy hyperuniform
pattern, r⃗i ≡ xi in the 1D domain Λ, analyzed previously (constraint
l = L/100). The length of the 1D domain is L = 1 m and the side is
W = 1.5 cm. The scatterer thickness is fixed at ld = L/100 = 1 cm,
thus fixing the radius of the quarter-wavelength Rq = 2.5 mm. The
scattering intensity of the non-resonant scatterers is varied by mod-
ifying the section reduction ratio ζd = [0.33, 0.5, 0.66, and 0.83]. The

FIG. 3. (a)–(d) Maps of transmission coefficient, ∣T ∣, in terms of χ and nor-
malized frequency fL/Nc for ζd = 0.83 (a), ζd = 0.66 (b), ζd = 0.5 (c), and
ζd = 0.33 (d). The red continuous lines correspond to the limit imposed by χ,
Eq. (4), fc = χNc/2L. Horizontal dashed lines in (d) represent the analyzed cases
in Fig. 4. The analysis of this figure is done without considering the losses.
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quarter-wavelength resonators load the rectangular cross section
scatterer with ζd = 0.33. The length of the quarter-wavelength res-
onator lq is modified such that the resonance frequency takes the
values fs = [1, 1/2, 1/3] fB, where fB = cN/2L is the Bragg frequency
corresponding to the L/N-periodic array (c is the sound speed of the
host material, i.e., of the square cross-sectional waveguide).

B. Non-resonant scatterers
We start by analyzing the transmission coefficients ∣T∣ of the

different proposed stealthy hyperuniform materials consisting of
non-resonant scatterers without considering the viscothermal losses.
The maps of ∣T∣ in terms of χ and normalized frequency fL/Nc
are depicted in Figs. 3(a)–3(d) for ζd = [0.83, 0.66, 0.5, and 0.33],
respectively. The red continuous lines show the cutoff frequency
imposed by χ, i.e., fc = χNc/2L. When the scatterers are small, i.e.,
ζd = 0.83 [Fig. 3(a)], the scattering is weak and the transmis-
sion coefficient is mainly affected by the Bragg interferences when
χ > 0.45. The three χ-dependent regions described in Sec. II C are
weakly visible.

The scattering intensity increases together with the impedance
mismatch between the rectangular cross section scatterer and

the main tube, i.e., with the decrease of ζd. The transmission
coefficient is thus more impacted by the pattern, as can be seen in
Figs. 3(b)–3(d). The bandgap width of the periodic distributions
(χ ≥ 0.5) decreases with the ratio ζd. The transparency regions for
f < fc are clearly visible in Figs. 3(b)–3(d). This transparency zone is
one of the main characteristics of the stealthy hyperuniform mate-
rials and is a direct translation of the constraints imposed on the
structure factor. We can clearly see how the spatial distribution of
the scatterers impacts the transmission coefficient in each of the
three regions: for χ ≲ 1/3, where the point pattern is mostly dis-
ordered without any hint of periodicity, we see the transparency
for f ≤ fc and the low transmission coefficient region for f > fc; for
χ ≥ 1/2, we can see that only the region around the Bragg frequency
is impacted by the scattering; for 1/3 ≲ χ < 1/2, the characteristic
transition zone with the alternating transparent and nontransparent
zones as imposed by the structure factor is shown.

Both the scattering properties and the dispersion relation
(eigenvalues of the transfer matrix when periodic conditions are
imposed at the limits of the material) are now investigated in
more detail in Fig. 4 when ζd = 0.33 corresponding to the case in
which the different regions are clearly present. Figures 4(a)–4(c)
show the reflection and the transmission coefficients when

FIG. 4. Wave transport properties of stealthy hyperuniform materials made of non-resonant scatterers in the position of the stealthy hyperuniform point distributions with
χ = [0.2, 0.39, and 0.47] as indicated in Fig. 3(d) when ζd = 0.33. We note here that the range of frequencies is reduced with respect to the one of Fig. 3(d) in order to
highlight the main physical phenomena. (a)–(c) Red dashed and black continuous lines show the reflection, ∣R+∣ = ∣R−∣, and transmission, ∣T ∣, coefficients. The thick black
continuous line represents the transmission coefficient calculated in the presence of viscothermal losses. (d)–(f) Real (upper panel) and imaginary (lower panel) parts of the
dispersion relation for χ = [0.2, 0.39, and 0.47], respectively. Vertical thick dashed black lines represent the limits imposed by χ, fc = χNc/2L. The thick line in the lower
panel shows the imaginary part of the dispersion relation calculated with losses.
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χ = [0.2, 0.39, and 0.47], respectively [as highlighted by the horizon-
tal lines in Fig. 3(d)].

First, these properties are analyzed in the absence of losses.
In that case, R+ ≠ R− because the structure is asymmetric, but
∣R+∣ = ∣R−∣ because of energy conservation. The cutoff frequency fc
imposed by χ is shown by the vertical thick dashed black lines in
Figs. 4(a)–4(c). The scattering coefficient behavior is clearly differ-
ent if f is lower or larger than fc. When f ≤ fc, the characteristic
Fabry–Pérot peaks are visible in the scattering parameters. They
are due to the finite size L of the sample, the effective impedance
of which is different from that of the surrounding medium. When
f > fc, no Fabry–Pérot peaks are noticed. In particular, the alterna-
tion of transparent and non-transparent regions translates the tran-
sition between the disordered and periodic distribution of scatterers
when χ ≃ 0.5 [see Fig. 4(c)].

Figures 4(d)–4(f) show the complex dispersion relation calcu-
lated for χ = [0.2, 0.39, and 0.47] considering the system with N = 25
as a supercell with periodicity L (see the supplementary material
for more details). A different behavior is again observed depending
on whether f is lower or higher than fc. When f ≤ fc, the system
presents, for all the analyzed cases, a dispersion relation with near
zero imaginary part of k and a linear dispersion relation for the
real part. When f > fc and χ ≲ 1/3 [Fig. 4(d)], the real part of the
dispersion relation is characterized by flat bands. These modes are
mostly localized in the structure due to the disordered feature of the
system. When 1/3 ≲ χ < 1/2 [see Fig. 4(e)], regions with flat bands
alternate with dispersive bands in the real part, which correspond

to the alternation of the transparent and opaque frequency regions
in the transmission coefficient. We note that the system becomes
dispersive close to fc when χ > 0.5 (due to the periodicity imposed
by the crystallization). That is the reason why the calculated limit
fc [vertical thick dashed black line in Fig. 4(f)] considering c the
speed of sound in air fits with neither the frequency at which the
dispersion relation starts to present an imaginary part [see Fig. 4(f)]
nor the beginning of the opaque region in scattering coefficients in
Fig. 4(c).

The effect of viscothermal losses in the system is now analyzed.
Thick black continuous lines in Fig. 4 show both the transmission
coefficient ∣T∣ and the imaginary part of the dispersion relation cal-
culated considering the complex and frequency dependent density
and bulk modulus in each part of the waveguide. The transparency
region when f ≤ fc is impacted by the viscothermal losses but as
shown by the dispersion relation is robust to losses. We note that
the decrease of ∣T∣ is very close to that in an empty waveguide as
shown in Ref. 23. When f > fc, the peaks of the transmission coeffi-
cient, due to the low dispersion bands of the dispersion relation, are
strongly affected and the amplitude is reduced. In this case, we note
that due to the viscothermal losses ∣R+∣ ≠ ∣R−∣ although the results
are not shown in the figure for simplicity.

C. Resonant scatterers
In this section, we introduce both the resonance effect

and the viscothermal losses into the system. We analyze its

FIG. 5. Analysis of the acoustic transmission coefficient of resonant stealthy hyperuniform materials for (a)–(d) fs = fB, (e)–(h) fs ≃ fB/2, and
(i)–(l) fs ≃ fB/3 for the configuration with ζd = 0.33. Maps of transmission coefficient, ∣T ∣, in terms of χ and normalized frequencies fL/Nc for fs = [1, 1/2, 1/3] fB
is shown in (a), (e), and (i), respectively. (b)–(d), (f)–(h), and (j)–(l) show the transmission coefficient for the case χ = [0.2, 0.4, 0.5], respectively, for fs = fB, fs = fB/2, and
fs = fB/3. The viscothermal effects of the system have been considered for all the calculations.
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transmission coefficients depending on both χ and fs for the
case ζd = 0.33. Figures 5(a), 5(e), and 5(i) show the map of
∣T∣ in terms of χ and the normalized frequency fL/cN for
three different resonance frequencies, fs = [1, 1/2, 1/3] fB, respec-
tively. For each case, we evaluate the transmission coefficient for
χ = [0.2, 0.4, 0.55] placed in the three regions of interest shown and
described in Sec. III A. Figures 5(b)–5(d), 5(f)–5(h), and 5(j)–5(l)
show ∣T∣ for χ = [0.2, 0.4, 0.55] and for fs = fB, fs = fB/2, and
fs = fB/3.

We start by analyzing the case fs = fB [Figs. 5(a)–(d)]. For
χ > 0.5, the system crystalizes and produces a phononic crystal
with periodicity L/N. The coupling of the resonance frequency and
the Bragg interferences produces the well-known widening of the
bandgap,30,31 which is clearly shown in both Figs. 5(a) and 5(d).
In order to compare, we refer to the non-resonant case shown in
Fig. 3(d). If we now reduce the value of the stealthiness, the region
of low transmission coefficient strongly increases in frequency as
shown in Figs. 5(b) and 5(c): the high frequency transmission range
shown in the periodic case is suppressed as periodicity is removed.
For example, for χ = 0.2, the bandgap starts at fL/cN = 0.35, show-
ing a broad range of frequencies with very low values of transmis-
sion coefficient for higher frequencies of the analyzed range. For all
the cases, we notice that the transparency region imposed by χ is
preserved.

Figures 5(e)–5(h) show the analysis for the case fs = fB/2. For
the purely periodic case, shown in Fig. 5(e) and in Fig. 5(h), three
dips of the transmission coefficient can be identified for χ ≥ 0.5: two
corresponding to the fundamental and first harmonic of the res-
onator and one corresponding to the Bragg interferences. For the
case χ = 0.4, shown in Fig. 5(g), we need to revisit the results of
the non-resonant stealthy material [see Fig. 4(c)]. For this region,
a dip of the transmission coefficient is shown for f = fB/2. Now, the
resonator is tuned at this particular frequency, thus showing a sim-
ilar effect of the bandgap widening but at f = fB/2. The coupling
between the resonance and the quasi-double periodicity of the sys-
tem creates a wide bandgap at this particular region. Finally, for the
case χ = 0.2 shown in Fig. 5(f), the disorder on the system together
with the resonance frequencies of the resonator (first and second
harmonics) produces considerable reduction of the amplitude of the
transmission coefficient from f L/Nc = 0.18.

Finally, Figs. 5(i)–5(l) show the analysis for the case fs = fB/3.
Again, for the periodic case [Fig. 5(l)], we see the three dips for the
transmission coefficient as in the previous case. For the case with
χ = 0.4, ∣T∣ shows four regions with very low values: the first and
second bands due to the double periodicity and the first and second
harmonics of the resonators. For the case with χ = 0.2, the correlated
disorder in the system reduces the transparency ranges between dips
of the transmission coefficient.

IV. CONCLUSION
The wave transport properties of 1D phononic materials made

of stealthy hyperuniform distributions of non-resonant or resonant
scatterers are analyzed in this work. The stealthiness is used to con-
tinuously analyze the properties from random distribution to peri-
odic ones. In the reciprocal space, there are three regimes charac-
terizing the point patterns. The disordered region, (i) 0 ≤ χ ≲ 1/3,

is characterized by transparent and opaque frequency regions with
the cutoff frequency imposed by χ. The wavy-crystalline region,
(ii)1/3 ≲ χ < 1/2, is characterized by both the transparent frequency
range imposed by χ and an alternation of opaque and transparent
frequency regions depending on the value of χ. We note that in this
region, the point pattern shows a dimerization made of two sub-
lattices with periodicity 2L/N when χ approaches to 0.5. The last
region is the crystalline, (iii)1/2 ≤ χ < 1, in which the Bragg peaks
are clearly visible and the point distribution is purely periodic. Once
the point pattern is built and analyzed, the phononic material is
made by adding non-resonant and resonant scatterers at these posi-
tions. The material is made by an air-filled waveguide in which the
cross section is adapted to be always in the plane wave regime. The
investigations for the non-resonant scatterers show that the behav-
ior of the structure factor is well-captured by the scattering coeffi-
cients of the system. However to clearly identify the three regions,
a given impedance mismatch is necessary. Interestingly, the loss-
less system exhibits purely real dispersion relation in the transpar-
ent region imposed by χ. The wave transport properties are shown
to be robust to the presence of viscothermal losses. The response
of the system made of resonant scatterers is richer due to the fact
that the resonance of the individual scatterers, fs, is added to the
system and can be exploited to couple with the scattering effects pro-
vided by the point pattern. When fs ≃ fB, while the effect of super-
bandgap is observed for periodic structures χ ≥ 1/2, for χ < 1/2, a
broader deep of the transmission coefficient appears from fs. More-
over, when fs ≃ fc, wide deeps of the transmission coefficient are
also created. If the resonance is placed away of fc or fB, the reso-
nance and the scattering due to the point pattern can be combined
independently to produce frequency ranges with low amplitude of
the transmission coefficient. In particular, the disordered systems
with resonant scatterers present better performances to be used as
acoustic isolation systems than the periodic ones when losses are
considered.

SUPPLEMENTARY MATERIAL

See the supplementary material for the detailed description of
the transfer matrix method used to analyze the stealthy hyperuni-
form materials described in this work. The analysis of the struc-
ture factor for stealthy hyperuniform materials generated without
constraints, i.e., with l = 0, is also shown.
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