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Abstract: In this paper, we present a method to recover the complex wavenumber dispersion
relations using spatial Laplace transform from experimental spatiotemporal signals measured by
laser ultrasonic technique. The proposed method was applied on zero-group-velocity Lamb modes
in order to extract the ultrasonic attenuation in a polycrystalline aluminum plate of about 70 µm
thickness. The difference between the experimental and theoretical Laplace Fourier transforms was
minimized in the least square sense to extract the complex amplitudes and complex wavenumbers
of the modes at about 40 MHz. The experimental results were compared to values reported in
the literature that were measured by other means and those estimated by using the quality factor
extracted from a single temporal signal.

Keywords: laser ultrasonics; zero-group-velocity Lamb modes; complex dispersion curves; ultrasonic
attenuation; non-destructive testing and evaluation

1. Introduction

The characterization of the material microstructures has been a continuous interest
of research, because of the microstructure effect on the performance and reliability of
materials and manufactured components. The mechanical properties of a material, in-
cluding ultrasonic attenuation, are intrinsically linked to its microstructures. Ultrasonic
non-destructive techniques, among other methods, are good candidates to characterize
the mechanical properties of a wide range of materials, which have resulted in numerous
publications (see, e.g., the review [1] and references therein). Ultrasonic attenuation can
be associated to the decrease in amplitude of the elastic waves while interacting with the
microstructures and is attributed to different mechanisms. The fundamental nature of the
elastic wave absorption and scattering mechanisms leading to ultrasonic attenuation has
been studied for decades [2]. An extended state-of-the-art summary on this research topic
is out of the scope of this paper. In the present work, the tested material is a polycrystalline
aluminum plate, which is a material commonly used for manufactured components. In
that case, the main source of attenuation is normally the scattering of the elastic waves by
grains [3]. This is the reason characterizing the ultrasonic attenuation in a polycrystalline
material allows gathering insightful information on its microstructure.

The Lamb waves are commonly used guided waves for ultrasonic non-destructive
testing of plate-like structures [4–8]. In recent years, specific Lamb modes have drawn
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increasing attention for their particular features: the zero-group-velocity (ZGV) Lamb
modes. The ZGV Lamb modes have indeed proved to be an efficient tool for locally
and precisely probing the thickness of a sample [9–13], the mechanical properties of
isotropic [14–17] and anisotropic materials [18], or for detecting damage in composite [19]
and metallic materials [20,21], at megahertz frequencies (even up to gigahertz [22,23]
frequencies). These particular modes correspond to local resonances of the inspected
structure and result from the interference of two Lamb waves having an opposite phase
velocity and coalescing at a single frequency (see further discussion in the next section).
The laser ultrasonics technique is an efficient technique to generate and detect such local
resonances because it is contactless. The all-optical configuration, consisting of a pulsed
laser source to generate elastic waves and an interferometer to probe the associated normal
displacement field, avoids contact with the sample, which could widen or even suppress
resonances. When the acoustic energy leakage of ZGV Lamb modes to the air is negligible
and the plate surfaces are parallel, these ZGV Lamb modes generated and detected by
lasers are good candidates to probe locally the ultrasonic attenuation of the plate. This
idea was followed in 2008 by measuring the decay time of the first ZGV Lamb mode
below 10 MHz in copper, duralumin, and steel plates [24] and, later, at higher frequencies
(∼2 GHz), in samples of tungsten with thicknesses in the micrometer range [25]. This
decay time is closely related to the quality factor of the local ZGV resonance, the measure
of which could therefore also give access to the local ultrasonic attenuation [11,15] or else
to the structural adhesive bonding in multi-layer assemblies [26].

Besides the local property of the ZGV Lamb modes, another interesting feature is the
complex nature of the two Lamb modes composing a ZGV Lamb mode in the vicinity of
the coexistence frequency, referred to as the ZGV frequency. Below that ZGV frequency,
the two Lamb modes have complex wavenumbers and are therefore evanescent. Above
the ZGV frequency and in the ideal case of a non-attenuating material, these two modes
have real wavenumbers and are purely propagative. In the presence of attenuation, the
wavenumbers of all Lamb modes are complex, which is enhanced in the vicinity of a ZGV
frequency. We propose to take advantage of this enhanced effect to measure the ultrasonic
attenuation by recovering the complex dispersion curves through a single treatment of laser
ultrasound B-scan data via the SLaTCoW method (spatial Laplace transform for complex
wave-number recovery [27]).

The paper is organized as follows. The theoretical dispersion curves in the complex
wavenumber-frequency space in aluminum plate are presented in Section 2. The exper-
imental setup and the two-used scanning configurations are introduced in Section 3. In
Section 4, the SLaTCoW method is shortly summarized and applied to reconstruct the
dispersion curves in the complex wavenumber-frequency space from the experimental
data. The ultrasonic attenuation of the assessed material is then estimated by minimizing
the difference between the theoretical and measured complex dispersion curves. Finally,
these measured values of ultrasonic attenuation are discussed, as well as the perspectives
of the presented work.

2. Zero-Group-Velocity Lamb Modes in an Aluminum Plate

Generally, the propagation of Lamb waves is dispersive. Thus, many studies, both
experimental and theoretical/numerical, focused on the dispersion curves of such guided
waves [28–35].

The dispersion curves of the symmetric (S) Lamb modes can be plotted after numeri-
cally solving the well-known Rayleigh–Lamb equation that reads [36,37]

tan(ph)
tan(qh)

+
(q2 − k2)2

4k2 pq
= 0, (1)

for the S modes, where h stands for half of the thickness of the plate, p2 = ω2(1/V2
L −

1/V2), and q2 = ω2(1/V2
T − 1/V2). In the latter expressions, ω denotes the angular

frequency and VL and VT stand for the longitudinal and shear acoustic waves velocities of
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the material, respectively. Note that k = kr + ıki is the complex wavenumber with kr and ki
the real and imaginary parts, respectively.

The dispersion curves of the S Lamb modes are plotted in Figure 1, for a 71.5 µm thick
aluminum plate with elastic properties presented in Table 1 and neglecting the attenuation.
The thickness is chosen to match that of the plate used in the experiments (see Section 3).
In Figure 1a, the dispersion curves are plotted in the real plane kr– f , for kr ≥ 0, where
parts of the branches where ki 6= 0 have been omitted for clarity. The complete view of the
dispersion curves is plotted in three dimensions in the complex wavenumber-frequency
space (kr, ki, f ) in Figure 1b. The symmetrical modes propagating in both directions with
positive (solid lines) and negative (dashed lines) group velocity, with subscript “b” for
backward mode (this is the case where phase and group velocities are opposite in signs),
are plotted for (kr, ki) ∈ R2: S0, S2, S1, and S4 modes are in solid lines, whereas S−0, S−2,
S−1, and S−4 are in dashed lines. The modes are here numbered according to the number
of nodes present in the thickness of the plate [37]. The arrows indicate the position of the
first ZGV mode, i.e., the S1S2-ZGV mode, on the dispersion curves. Indeed, at particular
positions on the dispersion curves of the modes, the group velocity Vg = ∂ω/∂kr vanishes,
while the phase velocity Vph = ω/kr remains finite. In the case where the dissipation due to
the material or to the waveguide boundaries is neglected, it is known that there is a rigorous
identity between the group velocity and the velocity of energy transport under very general
conditions [38]. Therefore, for the ZGV points where the group velocity vanishes while the
phase velocity remains finite, the resonances remain locally at the position of the excitation.

In Figure 1b, it is clear that a ZGV mode results from the interference of guided modes
coexisting for a unique couple of frequency/wavenumber. In the specific case where
the attenuation is neglected, it is seen that the four modes, S2 and S−1b as well as S−2
and S1b, are coincident two by two at ZGV points (black points in Figure 1b). At these
points, the four modes have exactly the same frequency fZGV and the same wavelength,
i.e., same absolute value |kZGV

r | of the real part of the wavenumber: kZGV
r = kS2( fZGV) =

−kS1b( fZGV) = −kS−2( fZGV) = kS−1b( fZGV). In the case where the material presents some
attenuation (always the case in reality), the four branches have non-zero positive (S2, S1b)
and negative (S−2, S−1b) imaginary parts ki for all kr and f . Therefore, the branches of the
modes S2 and S−1b, on the one hand, and of the modes S−2 and S1b, on the other hand, no
longer coincide at the ZGV points, which actually no longer exist. The detected resonance
would then correspond to the interference of the S2 and S1b modes and/or the S−2 and
S−1b modes. The latter statement explains why the ZGV resonance is called S1S2. Note
that the term “ZGV resonance” is used to discuss the resonance effect associated with the
existence of the ZGV Lamb mode but accounting also for the frequencies close to that of
the ZGV mode where the Lamb waves have non-zero but really small group velocity.
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Figure 1. Dispersion curves of the S Lamb modes in a 71.5 µm thick aluminum plate: (a) dispersion
curves in the real plane kr- f with a black arrow indicating the position of the S1S2-ZGV mode; (b)
three-dimensional view (kr, ki, f ) of the complex dispersion curves for the first symmetrical modes
propagating in both directions with positive (solid lines) and negative (dashed lines) group velocity,
with subscript “b” for backward mode: S0, S2, S1, and S4 modes are plotted in solid lines and S−0,
S−2, S−1, and S−4 are plotted in dashed lines. The colors of S0/S−0, S2/S−2, S1/S−1, and S4/S−4

modes are blue, green, red, and black, respectively. Two black solid circles show the position of the
ZGV point as indicated by the black arrows labeled “ZGV”.

Table 1. Elastic properties for aluminum sample.

Parameter Value

Thickness (µm) 2h 71.5
Density (kg/m3) ρ 2700
Longitudinal velocity (m/s) VL 6450
Shear velocity (m/s) VT 3100

Although the branches of all the modes will be shifted in the positive or negative
direction along the ki-axis due to the attenuation and depending on their propagation
direction, this shift will be easier to assess close to resonances than on propagative modes.
Close to resonances, such as those at the ZGV points or else at kr = 0 where there are the
thickness mode longitudinal and shear resonances, the attenuation indeed induces a larger
change on ki than away from resonances where the group velocity is no longer negligible
(note that, as discussed in [31], in the case of material absorption where the definition
Vg = ∂ω/∂kr of the group velocity leads to abnormal velocities, a possibility is “to consider
[instead] the velocity of energy transport which is defined as the ratio of energy flow to
mechanical energy density”). Therefore, although propagative modes do attenuate, good
precision on the estimation of this attenuation will require a longer propagation distance
where the group velocity is not closer to zero than in the vicinity of a resonance. This larger
effect of the attenuation on ki close to a resonance for a given mode is associated to the
path of the Lamb mode branch that goes from a propagating branch in the plane ki = 0 to
a non-propagating branch, i.e., out of the plane ki = 0, when the frequency is below the
resonance (cut-off or ZGV) frequency (Figure 1b). For further details on the path of Lamb
mode branches in absorbing plates, the readers are referred to the work of Simonetti and
Lowe [31]. We propose in the following to take advantage of this larger effect of attenuation
on ki in the vicinity of a ZGV resonance to estimate the attenuation.
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From the calculations of the dispersion curves in the case of the 71.5 µm thick alu-
minum plate free of attenuation shown in Figure 1, it is expected to experimentally detect a
ZGV resonance associated to the S1S2-ZGV mode with frequency fS1S2 = 40.28 MHz and
wavenumber kS1S2 = 21.93 rad.mm−1. The recovery of the complex wavenumber later on
is therefore performed around those frequency and wavenumber.

3. Experimental Setup and Measurements

The experimental setup used in this work is schematically illustrated in Figure 2a.
The pump laser (pulse duration close to 0.75 ns with a repetition rate of 1 kHz) had an
optical wavelength of 1064 nm and was focused into a stretched ellipse close to a line
generation source: the minor axis of the ellipse is ∼20 µm along the x-axis and its major
axis is ∼500 µm along the y-axis. The z-axis, as depicted in Figure 2b,c, is normal to the
free surfaces of the plate, its origin being in the middle of the plate thickness. Another
continuous laser (with a wavelength of 532 nm) was focused to a circular spot (diameter
∼20 µm) in the vicinity of the line source and was used for ultrasonic wave detection thanks
to the beam deflection technique. Note that this technique is often used for laser ultrasound
probe [39–44]. The calibration of the coincidence of the generation line source and the
detection circular spot was controlled by a rotational mirror. The aluminum plate was
attached on a three-dimensional stage. With this experimental setup, two different scans
were conducted: (1) to characterize the sample thickness, the rotational mirror position
was fixed, the distance between the position of the pump laser and that of the probe laser
was fixed at d = 20 µm, and the sample was moved along the x-axis (see Figure 2b); (2)
to perform spatiotemporal measurements (B-scan), the sample position was fixed and
the mirror rotated in order to move the generation from the position x = 0 mm, where
generation and detection are superimposed, to the position x = L, with a scanning step
of d = 20 µm (see Figure 2c). Note that, in Configuration (1), as shown in Figure 2b,
the distance d between the pump and the probe was mandatory for the detection of the
ZGV resonance since the beam-deflection technique is sensitive to the radial gradient
of the normal displacement (which is zero at x = 0, i.e., ∂uZGV

z (x = 0)/∂x = 0, where
uZGV

z stands for the part of the normal displacement that is due to the ZGV resonance).
Before the B-scan measurements, the sample was polished to improve the reflection of
the probe beam, but the sample thickness was thus changed. If the thickness varies along
the measured area, this may result in enhancing the probed attenuation due to thickness
inhomogeneity. This unsought effect should be reduced in order to measure the ultrasonic
attenuation associated mainly to material properties. To do so, a characterization of the
thickness was therefore performed to find a location of a constant thickness of the plate.
The experimental characterization of the thickness changes of the plate was carried out by
looking at the changes of the ZGV frequency along the x-axis: all other parameters being
unchanged, the relative variation of the thickness is equal to the opposite of the relative
variation of the ZGV resonance frequency [12]. It seems important to underline here that
the polishing of the sample, which can modify the film thickness homogeneity, is generally
not mandatory at all in laser ultrasonics. We did so because of the detection technique
we used. However, commercially available interferometers could indeed allow optical
detection of the laser-generated elastic waves on rough surfaces.

In Figure 3a, a typical signal measured when the generation and detection are at
a distance of d = 20 µm is shown. The low frequency part of the signal corresponds
to the first anti-symmetric mode A0, which is dominant. By zooming in on the time
signal (inset), we can see a higher frequency oscillation, which corresponds to the ZGV
resonance. When this signal is Fourier transformed (see Figure 3b), a resonance with
quality factor of QAl = 61 (full width at half maximum) shows up around 40 MHz. The
quality factor of the local ZGV resonance in an aluminum plate can be used for estimating
the local attenuation using the method proposed by C. Prada et al. [24], which can further
be compared with the attenuation as recovered by the SLaTCoW method (for further
discussions, see Section 4). By scanning the aluminum plate over 30 mm in front of the
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fixed laser beams (Configuration (1), Figure 2b), a zone of constant thickness of 4 mm-long
in aluminum is found. At this location, the thickness is estimated to be 2h = 71.5 µm,
which is obtained thanks to the measure of the ZGV resonance frequency and assuming
the elastic properties of our aluminum sample to be those reported in Table 1. Note that,
starting from a nominal thickness of 75 µm, the polishing leads to a varying thickness
over the complete 30 mm long scanned line in the range [70.7 µm, 74.5 µm], which was
estimated with the variation of the ZGV frequency. Spatiotemporal measurements were
then carried out using the scanning configuration shown in Figure 2c. We note here that
Figure 3c shows the normalized signal amplitude as a function of x (distance between the
generation and the detection areas) on the horizontal axis and of time on the vertical axis.
Furthermore, in Figure 3c, the A0 Lamb mode is mainly observed, i.e., the low frequency
content. From these measurements, a double Fourier transform,

ũ(kr, ω) =
∫ T

0

∫ L

0
u(x, t)e−ıkr xeıωtdxdt, (2)

is applied in order to see the wavenumber-frequency diagram in the real plane (kr, f ) shown
in Figure 3d, with T the maximum time of acquisition and L the length of the scanned line.
In the zoomed part around the ZGV frequency (Figure 3e), three branches are present (from
left to right): mode S1b, mode S2, and mode A1 (second anti-symmetric mode). Note that,
since the measurements are made in a single direction, i.e., in the direction of the positive
group velocities, the branch of the S1b mode appears where the real part of the wavenumber
is negative and that of the S−1b mode is not present since its group velocity is negative.
Following this first analysis of the experimental results in the real plane, it is now proposed
to use the SLaTCoW method [27], based on the spatial Laplace transform for the recovery
of the experimental dispersion curves in the complex wavenumber-frequency space.
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Figure 2. (a) Experimental setup. (b,c) Illustration of the two scanning configurations used: (b) the
rotational mirror is fixed with d = 20 µm, and then the plate is moved along x-axis; (c) the plate is
fixed, and the mirror rotates.
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4. Application of the SLaTCoW Method: Estimation of Ultrasonic Attenuation

The aim of this section is to estimate the ultrasonic attenuation in the polycrystalline
aluminum plate using the comparison between experimental and theoretical dispersion
curves in the complex plane. To achieve this, the SLaTCoW method [27] is used. This
method enables the extraction of complex wave-number information from guided elastic
wave measurements. In the SLaTCoW method, unlike the case of the conventional two-
dimensional (space and time) Fourier transform [45,46], the time-domain Fourier transform

ũ(x, ω) =
∫ T

0
u(x, t)eıωtdt, (3)

is associated with a spatial Laplace transform:

u(s, ω) =
∫ L

0
ũ(x, ω)e−sxdx, (4)

where s = sr + ısi is the complex variable of Laplace. According to Equation (4), it is
interesting to note that the quantity u(s, ω) corresponds exactly to the results obtained
with a spatial Fourier transform when the real part of s (sr) is set to zero:

u[s(sr = 0, si), ω] = ũ(kr, ω), (5)

therefore implying that the dispersion curves in the real plane could be retrieved from
u[s(sr = 0, si], ω). The idea of the SLaTCoW method is to compare the quantity u(s, ω)
obtained from the experimental data to a model. Let us assume that the wave field could be
written as the sum of the contributions of each of the modes in the frequency domain [27]:

ũth(x, ω) = ∑
n

AneiknxΠ(x− L), (6)
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where x denotes the spatial coordinate, Π(x − L) is the gate function equal to 1 when
x ∈ [0; L] and equal to 0 elsewhere, and An and kn are the complex amplitude and complex
wavenumber (depending on ω) of the nth mode, respectively. Note that, in our case, the
number of modes n is equal to 3, which denotes the three detected Lamb modes: S1b,
S2, and A1. After applying the Laplace transform to ũth(x, ω), the theoretical expression
uth(s, ω) to which the experimental results is compared takes the following form:

uth(s, ω) = ∑
n

An
∫ L

0
e(−s+ikn)xdx = L ∑

n

∣∣∣An
∣∣∣ sinh[(−s + ikn) L

2 ]

(−s + ikn) L
2

eiφn+(−s+ikn) L
2 , (7)

where φn stands for the phase of the complex amplitude An. The recovery of the com-
plex wavenumbers of the three modes is finally performed, frequency by frequency, by
minimizing the following cost function:

fopt(ω) =
√

∑
sr

∑
si

‖u(s, ω)− uth(s, ω)‖2. (8)

Note that the minimization is performed under constraints with the Nelder–Mead
simplex algorithm and the use of the function fminsearchbnd in MATLAB. For details and
other applications of the SLaTCoW method which are beyond the scope of this manuscript,
the readers are referred to the works in [27,47,48].

For the comparison with the experimental results, the complex Lamb wave spectrum
is computed applying to elasticity equations a numerical spectral method, as proposed
in [49]. The attenuation used to plot the theoretical curves shown in Figure 4 is 0 and
0.4 dB/cm/MHz for the cases without and with accounting for the attenuation, respec-
tively, so that the reader can appreciate the necessity to account for the attenuation in
order to retrieve the correct path of the complex branches. The value 0.4 dB/cm/MHz is
demonstrated below to be the value allowing the best fit of the theoretical branch of the S2
mode to the experimental one. Note that the attenuation in the model is supposed to vary
linearly with frequency. Although this is a strong assumption, the minimization process
presented below is achieved on a small frequency range, i.e., from 40.5 to 41 MHz, where
this assumption is acceptable. This small range of frequency is driven by the experimental
frequency range in which the S1b mode is observed (see Figure 3e). In Figure 4, the calcu-
lated dispersion curves and the results obtained from the measurements and analyzed by
the SLaTCoW method are shown. Figure 4a,b shows the dispersion curves in the real (kr, f )
and imaginary (ki, f ) wavenumber–frequency planes for the aluminum plate, respectively.
The experimental results for the S2 mode are depicted by red circles, and those for the S1b
mode by blue crosses. The dispersion curves calculated without attenuation are in black
dash-dotted and doted lines for the S2 and S1b modes, respectively. The dispersion curves
calculated with attenuation are in red dashed and blue solid lines for the S2 and S1b modes,
respectively. Note that, for the sake of the presentation, the measured curve corresponding
to the S1b mode (kr is negative) in Figure 4a is flipped at the position of the mode S−1b
(positive kr). Note also that, when close to the position of the ZGV point, the signal-to-noise
ratio (SNR) decreases due to the attenuation, which explains why there is no experimental
points shown in Figure 4 close to the position of the ZGV point.
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Figure 4. Dispersion curves in (a) the plane (kr, f ) and (b) the plane (ki, f ). The lines stand for the
theoretical dispersion curves with (w/) or without (w/o) taking into account the attenuation. The
symbols stands for the experimental data. In (a), the error bars of the experimental measurements in
the recovery of the real part of the wavenumber is depicted by horizontal segments.

In Figure 4b, it can be noticed that the recovered imaginary parts of the wavenumber
for the S1b mode are larger than those recovered for the S2 mode, which is consistent with
the theory showing a slight asymmetry of the S1b and S2 branches shifting along the ki-
axis. As the frequency decreases towards the ZGV frequency, the experimental S1b branch
deviates from the theoretical one, whereas both experimental and theoretical S2 branches
remain coincident. The fact that a deviation from theory of experimental results is seen for
the S1b mode and not the S2 one could be associated to a poorer recovery of the complex
wavenumber for the S1b mode due to a lower amplitude of the measured S1b mode, which
can be seen in Figure 3e where the S2 mode has clearly more spectral energy than the S1b
mode. Note that the amplitude of the S1b mode being lower than the amplitude of the
S2 mode is actually expected because of the experimental monitoring of the gradients in
normal displacement at the surface of the plate, which is theoretically smaller in amplitude
for the S1b mode than for the S2 mode, at least when thermo-elastically excited. We looked
at each of the reported data points to check wether the S1b mode complex wavenumber
was picked within the noise floor or could be trusted, and we stopped the recovery where
we were not confident. Therefore, although a biased recovery may explain the deviation,
we are not excluding that other unknown factor(s) participate in it. Nevertheless, the
experimental results show good agreement with the theoretical calculations when the
attenuation is accounted for. In the real plane, no difference between the case with or
without attenuation is noticed. However, the effect of the attenuation (repulsion of the
branches) is clearly observed experimentally when the imaginary part of the wavenumber
is recovered (see Figure 4b). The error bars of the experimental measurements in the real
wavenumber plane (red circle and blue cross in Figure 4a) stand for 2π/L, with L = 4 mm
the scanning distance along the x-axis.

The extra information given by ki is useful for assessing the ultrasonic attenuation of
the tested sample. To do so, a minimization process, with the attenuation as a parameter
and allowing the best fit (least mean square) of the experimental dispersion curves (in the
complex plane) to the theoretical dispersion curves accounting for attenuation, is performed.
This process is illustrated in Figure 5. The experimental results shown in Figure 4b in the
plane (ki, f ) are reported in Figure 5a. The color map shown in Figure 5a stands for the
change in the position of the S2 and S1b branches with changing the ultrasonic attenuation α
from 0 (bright yellow) to 1 dB/cm/MHz (dark blue): the larger is the attenuation, the larger
is the distance between the two branches in the plane (ki, f ). The minimization process is
illustrated in Figure 5b showing, for three cases, the root-mean-square deviation (RMSD)
between the measured (kexp

i ) and calculated (kth
i ) imaginary parts of the wavenumbers as a

function of the attenuation α, where RMSD(α) is defined by:
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RMSD(α) =

√√√√ 1
N

N

∑
n=1

∣∣∣kexp
i ( fn)− kth

i ( fn, α)
∣∣∣2 . (9)

In Figure 5b, the red circles, blue crosses, and black triangles represent RMSD(α) in the
following three cases, respectively: (i) using only experimental and calculated results of the
S2 mode, the attenuation is then named α2 and is estimated to be 0.40± 0.01 dB/cm/MHz;
(ii) using only experimental and calculated results of the S1b mode, the attenuation is then
named α1 and is estimated to be 0.54± 0.01 dB/cm/MHz; (iii) using experimental and
calculated results of both the S2 and S1b modes, the attenuation is then named α and is
estimated to be 0.47± 0.01 dB/cm/MHz. The obtained ultrasonic attenuation values are
shown in Table 2 together with those from the literature for aluminum [50]. Note that the
proposed precision ±0.01 comes from the step used in the calculation for the parameter α.
It should be mentioned that the attenuation α1 obtained by using only the results of the S1b
mode is larger than α2 obtained with the S2 mode, which may be due to a biased complex
wavenumber recovery, as discussed above.

f (
MH
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−2 20
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Estimation by S2
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Figure 5. Illustration of the minimization process: (a) map in the plane (ki, f ) of the change in
the position of the S2 and S1b theoretical branches with changing the ultrasonic attenuation α

from 0 (bright yellow) to 1 dB/cm/MHz (dark blue), the experimental results shown in Figure 4b
are reported; (b) curves showing the evolution of the root-mean-square deviation (RMSD) vs. α,
calculated with the S2 mode (red circles), the S1b mode (blue crosses), and both the S2 and S1b modes
(black triangles).

As shown in Table 2, the values of the ultrasonic attenuation α estimated in this work
are not similar to those measured in the literature [50]. However, the mechanisms for
phonon attenuation are not the same. Note that the values of the attenuation αlit (see
Table 2) are from [50] (Table III, p. 1053), in which the attenuation is measured along
different propagation directions in aluminum. We selected each time the value in the table
measured at the closest frequency to our case: 30.7 MHz in the [100] propagation direction,
35.4 MHz in the [110] propagation direction, and 31 MHz in the [111] direction. Several
points should be mentioned here that could explain the difference between the values
estimated using the proposed method and those reported in the literature:
• The samples used in the literature are single crystals (attenuation is mainly due to

coupling to electrons mediated by deformation potential), while the sample used
in this work is a polycrystalline plate (attenuation could be due to grain boundary
scattering, interaction with dislocations, etc.).

• The purity of the samples used in experiments are not exactly the same. For example,
in [50], the purity of aluminum is 99.9999% or 99.999%, but the aluminum sample
used in this work is with purity of 99.0%.

• In [50], the authors measured the ultrasonic attenuation along specific and different
propagation directions (namely, [100], [110], and [111] of aluminum single crystal),
whereas the attenuation obtained in this work is measured in a polycrystalline alu-
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minum sample and potentially over multiple grains, which would tend to increase
the attenuation.

• The low SNR due to the attenuation, where the estimation is done close to the ZGV
point, is the main source of measurement uncertainty in our experiments and could
thus be an additional source for the discrepancy.
Although the sample used in this study and those measured in the literature are

not the same (as explained in the first point above), the results of ultrasonic attenuation
(α) obtained in this work (see Table 2) are still inspiring. Hence, the comparison with α
measured by other means on the same tested sample could strengthen the confidence
in our results in order to fully demonstrate the quantitative measurement ability of the
proposed method. Furthermore, the all-optical technique used in this paper, based on
slowly propagating modes in the vicinity of the ZGV point, could also give access to
the local mechanical properties and thickness of the sample by using the value of the
ZGV resonance frequency. Therefore, the method shows good ability for determining, at
the same time, the mechanical properties and the ultrasonic attenuation of samples with
plate-like structures.

Table 2. Estimated ultrasonic attenuation in aluminum.

Attenuation Value (dB/cm/MHz)

α2 0.40 ± 0.01 Exp.
α1 0.54 ± 0.01 Exp.
α 0.47 ± 0.01 Exp.
αlit [100] 0.26 ± 0.04 Ref. [50]
αlit [110] 0.30 ± 0.01 Ref. [50]
αlit [111] 0.230 ± 0.006 Ref. [50]

The local attenuation, namely the ultrasonic attenuation measured at one local point
of the scanning distance on the aluminum plate, is estimated by using the approach
reported in [24], and the attenuation coefficient (denoted by αloc) is defined by the following
formula [24]:

αloc = 1/(Vphτ), (10)

where Vph = ω/kS1S2 is the phase velocity at the S1S2-ZGV point (see Figure 1 in Section 2)
and τ = 2QAl/ω is the time-decay constant (see Section 3). At the S1S2-ZGV point, we
get Vph = 11.54 km/s and τ = 0.48 µs. Using the values of Vph and τ in Equation (10),
we get αloc = 15.61 dB/cm, which is equal to 0.39 dB/cm/MHz if divided by the ZGV
resonance frequency at 40.28 MHz. The value of the attenuation coefficient calculated by
Equation (10) is lower than, but quite similar to, that estimated by the presented approach
in this work (see Table 2). The difference between the values of the attenuation coefficients
calculated by the two different methods can be mainly explained by the following two
reasons. First, the method in [24] provides the local attenuation at the position of a point
on the sample, while the method proposed in this work provides the global attenuation
over a given distance on the sample, here 4 mm. The value of α (estimated by the proposed
method) can be then considered as the average of αloc (estimated by the method in [24])
measured at each local point along the given distance on the sample. Second, the value of α
is estimated over the range of frequency ( f ∈ [40.5, 41.0] MHz) and that of αloc is estimated
at the ZGV resonance frequency ( fS1S2 = 40.28 MHz).

Before the conclusion of this work, we propose hereby another application of the SLaT-
CoW method for future work: the monitoring of cumulative damage [20,21] in materials
through the estimation of the ultrasonic attenuation from experimental measurements done
at different stages of the fatigue process. Indeed, when the material fatigues, an increase in
the ultrasonic attenuation is expected. Its monitoring should hence be insightful and could
give information about the fatigue progress and stage. Recently, in [21], we observed the
dramatic drop of the experimental quality factor in the early fatigue stage in aluminum,
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compared to the numerically calculated values by a theoretical modeling considering
only a thickness variation of the fatigued plate, which required the improvement of the
conducted modeling by accounting for the change of material attenuation. The proposed
method can thus be used for a better understanding of ultrasonic attenuation at different
fatigue stages through its global estimation along the damaged region, which could help
improving/completing the empirically based theoretical modeling proposed in [21].

5. Conclusions

We present in this paper the application of the SLaTCoW method to the ZGV Lamb
modes in order to extract the ultrasonic attenuation of a thin plate of polycrystalline
aluminum. With the spatial Laplace transform, the dispersion curves in the complex
wavenumber plane can be reconstructed and used for extracting the ultrasonic attenuation.
With the same set of measurements, it is also possible to measure the mechanical properties
and thickness of the tested plate, making the proposed method a handy and versatile tool
for material characterization. The experimental results are positively compared with values
reported in the literature, which were measured by other means. From the comparison be-
tween experimental measurements and theoretical calculations, a good agreement between
them is found and shows the ability of this proposed method for estimating the ultrasonic
attenuation in polycrystalline aluminum. Another method, based on the time-decay law of
ZGV resonance, as presented in [24], is applied to the same experimental measurements,
in order to extract the value of the local attenuation of the sample and then be compared
with the values estimated by the proposed method in this work. The difference between
the estimated results using two different methods has been found and discussed. It has
also been proposed that this method can be very useful in non-destructive evaluation. For
example, it could allow the extraction of the evolution of the ultrasonic attenuation in
cumulatively damaged plate structures [20,21]. Therefore, one of the research focuses in
the future could be the comparison of the ultrasonic attenuation obtained by this means
between intact and damaged (bending, tensile testing, three points testing, etc.) specimens
for better understanding of the nature of specific type of damages in metallic materials
and alloys.
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