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ABSTRACT

Excitability, encountered in numerous fields from biology to neurosciences and optics, is a general
phenomenon characterized by an all-or-none response of a system to an external perturbation of a
given strength. When subject to delayed feedback, excitable systems can sustain multistable pulsing
regimes, which are either regular or irregular time sequences of pulses reappearing every delay
time. Here, we investigate an excitable microlaser subject to delayed optical feedback and study the
emergence of complex pulsing dynamics, including periodic, quasiperiodic and irregular pulsing
regimes. This work is motivated by experimental observations showing these different types of
pulsing dynamics. A suitable mathematical model, written as a system of delay differential equations,
is investigated through an in-depth bifurcation analysis. We demonstrate that resonance tongues
play a key role in the emergence of complex dynamics, including non-equidistant periodic pulsing
solutions and chaotic pulsing. The structure of resonance tongues is shown to depend very sensitively
on the pump parameter. Successive saddle transitions of bounding saddle-node bifurcations constitute
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a merging process that results in unexpectedly large regions of locked dynamics, which subsequently
disconnect from the relevant torus bifurcation curve; the existence of such unconnected regions of
periodic pulsing is in excellent agreement with experimental observations. As we show, the transition
to unconnected resonance regions is due to a general mechanism: the interaction of resonance tongues
locally at an extremum of the rotation number on a torus bifurcation curve. We present and illustrate
the two generic cases of disconnecting and of disappearing resonance tongues. Moreover, we show
how a pair of a maximum and a minimum of the rotation number appears naturally when two curves
of torus bifurcation undergo a saddle transition (where they connect differently).
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1 Introduction

Excitability refers to the spiked or pulsed response of a
system at rest to an external perturbation when the pertur-
bation amplitude exceeds the so-called excitable threshold,
while no response occurs for smaller perturbations [14].
This general phenomenon has been described in a variety
of scientific fields from biology [35] to neurosciences [13]
and optics [34], and typically results from the interplay
between different internal timescales in the system. After
a (short) excitable pulse has been triggered, the system
enters a refractory period, during which it is either impos-
sible or much more difficult to trigger another excitable
response[25]; note that the refractory period is significantly
larger than the duration of the pulse itself. In the presence
of delayed feedback, an excitable system can regenerate
its own output: after the first excited pulse, the output is
reinjected after the feedback delay time τ which triggers
the next pulse. As the process repeats, this results in a
periodic pulsing regime whose period is directly related
and close to the delay τ . This general mechanism for self-
pulsations has been demonstrated in a variety of optical
systems [11, 21, 30], as well as in an excitable biological
cell [35].

From a more general point of view, the introduction of a de-
lay to an excitable system can induce a wealth of complex
dynamics beyond regular self-pulsing [10, 29, 24]. This in-
cludes a high degree of multistability [37] and an enhanced
dynamical complexity, such as, for example, quasiperiodic
[18] and chaotic regimes. In particular, recent experimen-
tal and numerical investigations have demonstrated that
an excitable microlaser with delayed feedback can sustain
multistable periodic pulsing regimes [31, 32]. Depending
on the ratio between the internal timescales of the excitable
microlaser and on the delay time of the feedback loop or
external cavity, these include pulsing patterns with equidis-
tant pulses of equal amplitude or with non-equidistant
pulses of different amplitudes [33]. The emergence of
equidistant pulsing patterns is well understood [37, 16, 32].
The emergence of non-equidistant pulsing regimes, on the
other hand, has been suggested to originate in resonance
phenomena associated with locked periodic orbits on sta-
ble tori [33] — yet this was still to be investigated, which
motivated the work presented here.

We adopt a dynamical systems point of view to inves-
tigate experimentally and numerically the emergence of
multi-frequency dynamics in an optical realisation of an
excitable system with delayed feedback. We consider an
excitable microlaser subject to delayed optical feedback
[25, 6], whose study is motivated by potential applica-
tions to neuromorphic photonic computing [20, 27]. Its
feedback-induced dynamics is investigated both experi-
mentally and with a suitable mathematical model — the
Yamada equations with delayed feebback [36, 16], which
take the form of three coupled delay differential equations
(DDEs) with two slow and one fast variables. Compared to
ordinary differential equations, solving DDEs requires spe-
cific numerical methods due to their infinite-dimensional

nature [22]. We use the Matlab-based numerical contin-
uation software DDE-Biftool [7, 8, 28] to perform an in-
depth bifurcation analysis in three parameters of practical
importance: the feedback delay τ , the feedback strength
κ and the pump parameter A. The results presented here
unveil how very large, experimentally accessible locking
regions emerge in the parameter space, leading to an in-
creased and observable degree of multistability. We show
that this phenomenon involves several transitions in the
(τ, κ)-plane that change the structure of regions of locked
dynamics. These occur in such a very small A-interval
that the associated switch in observed pulsing may seem
instantaneous from an experimental perspective. From the
mathematical point of view, on the other hand, we are able
to distinguish and identify these transitions. In particular,
we find two generic cases of resonance tongues interact-
ing locally at an extremum of the rotation number on a
torus bifurcation curve. These lead to the disconnection
and disappearance of resonance tongues in a parameter
plane, respectively, as a third parameter is changed. As we
also show, extrema of the rotation number emerge natu-
rally, including the Yamada model with delayed feedback,
when two torus bifurcation curves reconnect differently at
a saddle transition.

The article is organised as follows. The experimental de-
vice is described in Section 1.1, and experimental observa-
tions are presented and discussed. Background on the math-
ematical model is provided in Section 1.2. In Section 2,
multi-frequency dynamics, including non-equidistant pe-
riodic pulsing regimes, quasiperiodic regimes and chaos
are investigated through time-domain simulations of the
model. In Section 3, a bifurcation analysis demonstrates
that resonance tongues in the (τ, κ)-plane play a key role in
the emergence of the observed multi-frequency dynamics.
The sensitivity of the structure of resonance tongues to the
experimentally relevant pump parameter A is investigated
in detail in Section 3.2, and the phenomenon of discon-
necting and disappearing resonance tongues is the focus of
Section 3.3. We draw some conclusions in Section 4.

1.1 Experimental device and observed pulsing
regimes

In our optical realisation we use a semiconductor micropil-
lar laser with integrated saturable absorber, consisting of a
5µm diameter pillar laser with an original design [25, 6, 3].
In particular, its microcavity includes both a gain and a
saturable absorber section. This microlaser emits light
perpendicularly to its surface at the cavity resonance wave-
length of 980 nm and is optically pumped at around 800 nm.
The pump intensity is set just below the self-pulsing thresh-
old such that, in the absence of feedback, the microlaser
is in the excitable regime [25, 26, 9]. Short optical pulse
perturbations (of 80 ps duration) can be sent by an external
Ti:Sa mode-locked laser to trigger excitable responses that
consist of optical pulses of approximately 200 ps duration.
To realise an external cavity providing the delayed feed-
back, part of the signal emitted by the microlaser is trans-
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mitted through a beamsplitter (R/T=70/30) and reflected
back by a distant mirror after passing through a 5 cm focal
length lens. The resulting optical feedback delay time τ
can be set to between ∼ 5 to 10 ns. The light reflected
by the beamsplitter is analyzed using an avalanche pho-
todiode, amplified with a high bandwidth RF-amplifier
and recorded with an oscilloscope. The microlaser is tem-
perature controlled close to room temperature thanks to a
Peltier cooler.

In the presence of feedback, it has been shown that a first
excitable pulse can regenerate itself when reinjected in
the micropillar after the delay τ , provided that the feed-
back strength is sufficiently large [32]. A periodic pulsing
regime results with fundamental repetition frequency close
to τ−1; this regime can coexist with harmonic pulsing
solutions with several regularly timed pulses in the feed-
back cavity. It has been shown that individual pulse trains
can be added or erased by single external optical pertur-
bations [31, 32]. Under certain experimental conditions,
non-regular pulse trains can also be emitted following a
seemingly pulse-timing symmetry-breaking phenomenon
[33].

Figure 1 illustrates the diversity of pulsing dynamics ob-
served experimentally. The left column represents time se-
ries of the measured intensity I and the right column shows
their pseudo-space representation [1]: temporal traces are
folded at (approximately) multiples of the delay time τ
and stacked vertically. In this representation, the x-axis
represents the delay line (realized by the external feedback
cavity) and the y-axis the recorded number of roundtrips
in the external feedback cavity. Figure 1(a) shows a pe-
riodic regime with two equidistant pulses per feedback
roundtrip, triggered by an appropriate sequence of two
successive external perturbations [32]. The amplitude of
the pulses is quite irregular, while the interpulse timing
repeats consistently roundtrip after roundtrip. Such laser
intensity fluctuations can be attributed to pump noise and
also to detection noise since the microlaser has a very low
output power [30]. In Figure 1(b), the system is in the
symmetry-broken regime [33]: it sustains two pulses per
roundtrip with unequal but well-defined interpulse tim-
ings. In the pseudo-space representation, it appears as two
non-equidistant pulses in the external feedback cavity. Fig-
ure 1(c) illustrates a regime reminiscent of quasiperiodic
dynamics. In particular, it displays a strong modulation
of the pulse amplitude. Note that the pulse timing is also
affected, as the pseudo-space representation shows: the
group of pulses shows a negative shift (towards the left)
when the pulse amplitude increases. This is explained by
the strong amplitude-timing coupling in excitable systems:
the response time to an external perturbation gets shorter
when the perturbation amplitude is increased [31]. Impor-
tantly, all the regimes shown in panels (a-c) are multistable
and coexist with the off-state (non-lasing equilibrium) of
the laser. Finally, Figure 1(d) illustrates a complex pulsing
regime reminiscent of chaotic dynamics. It is recorded
for a value of the pump parameter slightly above the first
lasing threshold at which the off-state of the laser loses

Figure 1: Experimental intensity time series (left, a1-d1)
and their pseudo-space representation (right, a2-d2) for:
(a) equally spaced two pulses per feedback roundtrip (τ =
5.47 ns), (b) symmetry-broken two pulses per roundtrip (τ
= 8.22 ns), (c) modulated quasiperiodic regime (τ = 4.78
ns), and (d) complex dynamics above the lasing threshold
(τ = 4.77 ns).

stability. As such, this regime is not triggered by external
pulse perturbations, but rather by noise. The pseudo-space
representation clearly shows multiple competing pulses
in the feedback cavity. This complex regime cannot be
observed for a long period of time because the microlaser
heats up, which results in it switching off.

Overall, Figure 1 clearly demonstrates the existence of dif-
ferent periodic, quasiperiodic and more complex regimes
of the excitable micropillar laser with delayed optical feed-
back. It should be noted that the different regimes in Fig-
ure 1 are observed for different experimental parameters,
in particular, for different values of feedback delay and
pump intensity, which are easily tuned experimental pa-
rameters. Moreover, different microlasers (of the same
design and with the same specifications) were considered,
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which possibly display slightly different internal parame-
ters (including different recombination rates of carriers in
the gain and absorber sections) due to fabrication.

1.2 Background on the Yamada rate equations with
delay

The dynamics of the experimental system under consid-
eration is investigated by using a straightforward exten-
sion of the original Yamada rate equation model [36], a
well known system of three ordinary differential equa-
tions (ODEs) for single-mode, Q-switched lasers. It has
been studied extensively, in particular, through a complete
numerical bifurcation analysis which highlighted all its
possible dynamics [5, 19]. This showed that this model ex-
hibits an excitable regime for a large range of parameters,
below the lasing threshold at which the non-lasing (i.e.,
zero-intensity) equilibrium becomes unstable. We consider
here the Yamada model with an additional delayed optical
feedback term [16]. This model has been shown to pro-
duce a wealth of pulsing regimes [16, 29] and to describe
accurately a range of dynamics observed experimentally
in the micropillar laser with integrated saturable absorber
and delayed optical feedback considered in this article
[30, 31, 32, 33]. This includes a variety of stable pulsing
periodic regimes with different numbers of equidistant and
non-equidistant pulses in the feedback cavity. Overall, the
model is written as a system of three coupled DDEs for
the dimensionless gain G, absorption Q and intensity I:

Ġ = γG(A−G−GI);

Q̇ =
γG
σ

(B −Q− aσQI);

İ = (G−Q− 1)I + κI(t− τ).

(1)

Here, A is the pump parameter, B describes the linear
absorption, a is the saturation parameter, γG is the recom-
bination rate of carriers in the gain section, and σ is the
ratio between the recombination rate of carriers in the gain
and absorber sections; furthermore, time is rescaled in (1)
to the photon lifetime in the cavity (which is on the order
of 1-2 ps). Importantly, γG is usually small in semicon-
ductor lasers and σ is between 0.5 and 2 for the microlaser
we consider. As such, system (1) is a slow-fast dynam-
ical system with two slow variables G and Q, and one
fast variable I . In the intensity equation, the delayed term
describes the incoherent delayed optical feedback with
feedback strength κ and delay time τ . The influence of
the feedback parameters κ and τ has been investigated
through an extensive bifurcation analysis [16, 29]. This
highlighted, in particular, an important and increasing level
of multistability as the delay τ is increased, with a large
number of coexisting stable periodic pulsing solutions.

The parameters describing material properties of the laser
are fixed here throughout to B = 2, γG = 0.01, a = 5.5,
and σ = 1.8; these values are chosen to match the parame-
ters considered in previous work [33]. The pump parameter
A, the feedback strength κ and the feedback delay τ , on
the other hand, can be changed during the experiment and
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Figure 2: Time-domain simulations of (1) for A = 2.7
and τ = 335, showing intensity time series (left, a1-d1)
and their pseudo-space representation (right, a2-d2); here
κ = 0.007 in (a), κ = 0.0159 in (b), κ = 0.04 in (c),
and κ = 0.1 in (d). The inset in panel (d1) shows an
enlargement of the intensity time series over two roundtrips
in the external feedback cavity.

are considered as bifurcation parameters. Importantly, for
all the parameters combinations considered in this article,
the solitary laser for κ = 0 (i.e., the model without the
feedback term) is in the excitable regime: the non-lasing
equilibrium, corresponding to the laser off-state, is stable
but the system can release a single intensity pulse when
subject to an external perturbation with sufficiently large
amplitude [5].

2 Multi-frequency dynamics in
time-domain simulations

The experimentally observed regimes in Figure 1 can be
identified in time-domain simulations of the Yamada model
with feedback (1). Figure 2 illustrates such simulations
with time series of the intensity I for fixed feedback delay
τ = 335 and pump parameterA = 2.7, and the four values
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of the feedback strength κ = 0.007, κ = 0.0159, κ = 0.04
and κ = 0.1. We checked that, for the considered value of
A, the solitary laser (for κ = 0) is indeed in the excitable
regime. Moreover, in the presence of feedback, the non-
lasing (i.e., zero-intensity) equilibrium solution of (1) is
still stable for all the values of κ considered in Figure 2:
hence, the intensity I remains zero in the absence of ex-
ternal perturbations. In the simulations, an initial external
perturbation is accounted for by setting initial conditions
(given for a DDE by a history segment over [−τ, 0]) with
suitable non-zero intensity. Specifically, these are set to
the (unstable) equilibrium solution of (1) with a non-zero
intensity I , which corresponds to the continuous-wave
regime of the laser [29].

The time series in Figure 2(a1-d1) are shown after a few
dozens or hundreds of roundtrips to ensure that any tran-
sient dynamics has died down. The displayed dynamical
regimes thus correspond to stable pulsing regimes of (1).
Panels 2(a2-d2) show the corresponding pseudo-space rep-
resentation of these time series[1], as explained above.
These simulation results illustrate the diversity of stable
pulsing regimes observed over a small range of the feed-
back strength κ.

Figure 2(a) for κ = 0.007 shows a periodic pulsing regime
with four equidistant pulses in the external feedback cavity,
that is, over the span of one delay time τ that constitutes
the feedback loop. Note that the amplitude also repeats
exactly here because (1) does not feature (pump or other)
noise. The positive slope of the intensity pulse trains in
the pseudo-space representation in panel (a2) shows that
the period of pulsing is slightly larger than τ/4, which is
due to the latency time of the system to the re-injected
perturbation [37, 29, 16].

Figure 2(b-c) for increasing values of κ (where all the
other parameters are fixed) show examples of dynamics on
a torus, which may be quasiperiodic or locked to an attract-
ing periodic orbit. Locked periodic solutions are found
inside resonance regions or resonance tongues, which are
regions of a parameter plane that are bounded by curves
of saddle-node bifurcations of periodic orbits. Resonance
tongues emerge from resonance points, which are points
along a torus (or Neimark-Sacker) bifurcation curve where
the rotation number is rational [17, 15]. Quasiperiodic
solutions, on the other hand, are found in the parameter
plane along curves ‘in between’ infinitely many and gen-
erally very narrow resonance tongues. Figure 2(b) for
κ = 0.0159 is past a torus bifurcation and shows a locked
periodic orbit on a torus. Note that the period of this peri-
odic regime is not directly related to an integer submultiple
of the feedback delay time τ . Rather, a single period of
the periodic solution displays several intensity pulses with
different amplitudes, which is characteristic of a locked
periodic orbit on a stable invariant torus; see panel (b1).
Figure 2(c) for κ = 0.04 shows a quasiperiodic regime (or
a periodic regime with a very large period); in particular,
the time series does now not repeat exactly but displays
roughly five pulses in the feedback loop, with a deeply

modulated pulse amplitude. The pseudo-space represen-
tation in panel (c2) highlights the strong amplitude-time
coupling of the pulses [31]. The fact that a stable quasiperi-
odic regime is observed in panels (c) for a nearby value, yet
larger value of κ support the interpretation that panels (b)
indeed show a locked periodic solution on a stable torus.

Finally, Figure 2(d) for the yet larger value of κ = 0.1
shows an example of a chaotic regime. Here no clear struc-
ture is observed in neither the repetition rate nor the pulse
amplitudes, which is visually clear especially in panel (d2);
see also panel (d1) and the enlargement of the intensity
time series over two roundtrips in the inset; note, in par-
ticular, that the modulation of the amplitude is no longer
periodic.

Transitions between the different stable pulsing regimes in
Figure 2 as the feedback strength κ is changed are explored
further in Figure 3. Panels (a) and (b) show one-parameter
bifurcation diagrams for increasing and decreasing val-
ues of κ, respectively, where observed dynamics is repre-
sented by the pulses amplitudes observed over one single
roundtrip of duration τ . These diagrams are obtained from
sweeped simulation as follows. For the smallest values of
κ, the initial condition/history is set to the (unstable) lasing
equilibrium solution; for each subsequent value of κ, the
previously calculated solution (i.e., for a slightly smaller
or larger value of κ in Figure 3(a) and (b), respectively)
is considered as initial history. In all cases, the simula-
tion is run over several hundreds of roundtrips so that any
transient phenomenon are disregarded, before the pulses
amplitudes over one single roundtrip are recorded. Fig-
ure 3 also illustrates individual dynamics at selected values
of κ that are indicated by vertical lines in panels (a) and (b).
In each case, we show the attractor in (G,Q, I) space and
in a Poincaré section represented by the (G,Q)-plane. It is
important to note here that, due to the infinite-dimensional
nature of DDEs, these are both projections: onto the three-
dimensional physical space of the variables G, Q and I for
the trajectory and, similarly, onto the (G,Q)-plane for the
Poincaré map, which is defined by the fixed value Ieq of
the intensity at the unstable equilibrium point [16]; specif-
ically, Ieq = 1.383 in panel (c1), Ieq = 1.412 in panel
(c2), Ieq = 1.444 in panel (c3), Ieq = 1.572 in panel (c4),
and Ieq = 1.796 in panels (c5) and (d). We also show the
corresponding radio-frequency (RF) spectrum (the power
spectral density) of the real-valued intensity time series.

As κ is varied, several transitions are observed between
the pulsing regimes displayed in Figure 2. For the smallest
values of κ in Figure 3(a), a single value is observed for the
pulse amplitudes. This corresponds to a periodic regime
with a fixed number of equidistant pulses of equal ampli-
tude per roundtrip [33]. This periodic regime is illustrated
in panel (c1) for κ = 0.002, where one observes a periodic
orbit in (G,Q, I) space and two corresponding points in
the (G,Q)-plane representing the Poincaré section; the RF
spectrum is discrete, featuring a main peak with large har-
monics owing to the strongly pulse-like nature of the oscil-
lation. Figure 3(a) shows that increasing κ leads to a tran-
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Figure 3: One-parameter bifurcation diagrams of (1) for
A = 2.7 and τ = 335 where κ is increased (a) and de-
creased (b). Also shown are representative trajectories in
(G,Q, I) space (left), their intersection with a Poincaré sec-
tion represented by the (G,Q)-plane (middle), and corre-
sponding RF spectra (right), for κ = 0.002 (c1), κ = 0.013
(c2), κ = 0.025 (c3), κ = 0.07 (c4) and κ = 0.14 (c5,d).

sition from this periodic to a regime with an increasingly
stronger modulation of the pulse amplitude. This is clear
evidence of a torus bifurcation with subsequent quasiperi-
odic or locked dynamics. Panels (c2) for κ = 0.013 show
the corresponding stable torus in projection onto (G,Q, I)-
space; its intersection with the Poincaré section is a densely
filling closed curve in the (G,Q)-plane, and its RF spec-
trum displays a large number of peaks at incommensurate
frequencies; compare with Figure 2(b). Hence, the dynam-
ics on the torus is quasiperiodic (or of very high period).
When κ is increased in Figure 3(a), different (usually very
narrow) resonance tongues are briefly crossed, where the
dynamics is locked to a periodic orbit on the stable torus;
see also Figure 2(c). Figure 3(c3) shows such a locked peri-
odic regime for κ = 0.025, which lies in a larger resonance
tongue corresponding to a wider range of κ. The trajectory
in (G,Q, I)-space shows a closed trajectory, which does
not cover the entire stable torus but rather winds six times
around it. The Poincaré section in the (G,Q)-plane shows
the corresponding six intersection points, which confirms
that the system is in a 1:6 locking region. When κ is in-
creased further, a transition is observed in Figure 3(a) from
quasiperiodic (or high-period) dynamics on a torus to a
chaotic regime; this is detected by a sudden growth of
the maximal recorded amplitude. The chaotic regime is
illustrated further in Figure 3(c4-c5); compare with the
chaotic intensity time series in Figure 2(d). Here, neither
the (projected) trajectory nor the Poincaré section display a
clear structure; moreover, the RF spectrum is characteristic
of a chaotic regime: although some clear peaks are visible,
there are multiple frequency bands in which no clear struc-
ture can be seen. This chaotic regime is observed over a
large range of κ in Figure 3(a) before the system jumps
back to a stable periodic pulsing regime as κ is increased
further.

Starting from this periodic solution, Figure 3(b) shows the
one-parameter bifurcation diagram of (1) for decreasing
κ. The comparison between the bifurcation diagrams in
panels (a) and (b) highlights a region of multistability,
where the chaotic regime displayed in Figure 3(c5) coexists
with the stable periodic regime shown in panels (d). As can
be seen from its RF spectrum, this periodic regime features
a different number of equidistant pulses in the feedback
cavity compared to the periodic regime in panel (c1). It is
important to note that the non-lasing equilibrium solution
of (1) is stable as well over the entire range of κ considered
in Figure 3(a,b). Which regime is observed in practice in
the presence of the overall multistability depends on the
considered initial condition/history [32].

3 Bifurcation analysis in the (τ, κ)-plane

The complex dynamics highlighted in Figures 2 and 3 is
now investigated further by means of numerical bifurca-
tion analysis, where the feedback delay τ and the feedback
strength κ are considered as the main two bifurcation pa-
rameters. This is performed with the Matlab-based con-
tinuation software DDE-Biftool [8, 7, 28], which allows
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Figure 4: Two-parameter bifurcation diagram of (1) in the
(τ ,κ)-plane for A = 2.7 (a), showing a curve H of Hopf
bifurcation (blue), curves T of torus bifurcation (green),
a curve S of saddle-node bifurcations of periodic orbits
(red), as well as codimension-two points DH of degenerate
Hopf bifurcation points (blue dots) and HH of Hopf-Hopf
bifurcation (green dots). The enlargement in panel (b)
additionally shows some of the (lowest-order) resonance
points along the torus bifurcation curves and the curves S
of saddle-node bifurcations of periodic orbits (magenta)
bounding the corresponding resonance tongues. The inset
shows a further enlargement of the framed area in panel
(b), highlighting the emergence of the torus bifurcation
curve from a Hopf-Hopf bifurcation point.

for the continuation of families of equilibrium and peri-
odic solutions of delay-differential equations, as well as
their bifurcations. The results are presented in the form
of bifurcation diagrams consisting of bifurcation sets in
the (τ, κ)-plane, formed by curves of codimension-one
bifurcations that bound regions of different dynamics.

3.1 Bifurcation diagram for A = 2.7

Figure 4 shows the bifurcation diagram in the (τ ,κ)-plane
for the value A = 2.7 of the pump parameter considered
in Figures 2 and 3; its panel (a) shows the range of τ from
0 to 550, and panel (b) is an enlargement that focuses on
the resonance structures we consider here. A main feature
of Figure 4 is a single curve H of Hopf bifurcation of the
lasing (i.e., non-zero intensity) equilibrium of (1): when
this curve is crossed, for instance increasing τ at constant
κ, a small-amplitude periodic solution emerges. More pre-
cisely, the bifurcating periodic solution is locally stable
when the Hopf bifurcation is supercritical, indicated by
bold parts of the curve H, and it is locally unstable along

thin parts of H where the Hopf bifurcation is subcritical.
The criticality of H changes at codimension-two degen-
erate Hopf bifurcation points DH, indicated by blue dots
in Figure 4. We also find codimension-two Hopf-Hopf
bifurcation points HH in Figure 4; they arise here due to
self-intersections of the curve H and also lead to changes
of criticality of the Hopf bifurcation. When τ is increased
for a (sufficiently large) fixed value of κ, several stable pe-
riodic solutions emerge successively from the supercritical
parts of the curve H, and their periods are close to submul-
tiples of the delay τ [16, 29]. Past the Hopf bifurcations
where they emerge, these periodic solutions correspond
to pulsing patterns with different numbers of equidistant
pulses in the feedback loop [29]; these numbers are shown
in boxes in Figure 4(a) for the respective supercritical parts
of the curve H. The increasing level of multistability with
the delay τ is typical for delay systems [37], and has been
discussed in the literature for this particular system [23].

The codimension-two points DH and HH in Figure 4 also
give rise to additional bifurcation curves in the (τ ,κ)-plane.
From each degenerate Hopf bifurcation point DH, where
the Lyapunov coefficient (third-order normal form coeffi-
cient) vanishes, emerges a curve S of saddle-node bifur-
cation of periodic orbits [16, 29]; for sake of keeping this
exposition focused, Figure 4 only shows the curve S that
emerges from a point DH for low κ near τ = 300, which
we require for the discussion in Section 3.2. Moreover, at
each Hopf-Hopf bifurcation point HH, where the lineariza-
tion of system (1) at the bifurcating lasing equilibrium has
two pairs of complex conjugate eigenvalues on the imagi-
nary axis, two curves of torus bifurcation T can typically
emerge [17]. For sake of clarity, only two pairs of curves T
are shown in Figure 4: those emerging from the two points
HH for low values of κ around τ = 335. Indeed, many
Hopf-Hopf bifurcation points are encountered as the delay
τ is increased, resulting in a very complex bifurcation dia-
gram with many more curves of torus bifurcation; this has
been discussed in the literature [16, 29, 23] and is beyond
the scope of this article.

3.1.1 Connecting resonance tongues

We now focus on the two shown pairs of torus bifurcation
curves T. They are shown in Figure 4(b) in the enlarged
parameter area of interest, where they are clearly seen to
emerge from the two respective Hopf-Hopf bifurcation
points; see also the further enlargement in the inset. From
each torus bifurcation curve T bifurcates a smooth invari-
ant torus on which the (multi-frequency) dynamics is either
quasiperiodic or locked. Resonance tongues in the (τ ,κ)-
plane emerge from p:q resonance points, some of which
are highlighted on the curves T by black dots: at these
points, the pair of critical complex conjugate Floquet mul-
tipliers on the unit circle e±2πα has the rational rotation
number α = p

q , where p and q are relatively prime [17].
A pair of curves S of saddle-node bifurcation of periodic
orbits emerge from each p:q resonance point; they form
the boundaries of a p :q resonance tongue in which the
dynamics is p:q locked on the torus, that is, periodic rather
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than quasiperiodic; see Figure 3(c3) for an example of
such locked dynamics.

Figure 4(b) also shows curves S bounding the resonance
tongues of some lower-order resonances; we remark that
the pairs of curves S bounding narrow resonance tongues
are sometimes so close to each other that they appear as
single curves in the parameter plane. We find that these
pairs of curves S connect different resonance points on
the pair of torus bifurcation curves T emerging from the
respective Hopf-Hopf bifurcation point HH; specifically
a given p :q resonance point on one of the curve T con-
nects to a p:(p + q) resonance point of the other curve T.
To the best of our knowledge, such connecting resonance
tongues have been observed only once before, namely in
a constructed system of DDEs with two state-dependent
delays [4]. The Yamada model with a single feedback term
and with a constant (non-state-dependent) delay, hence,
constitutes the first physically relevant and yet also sim-
plest mathematical model featuring connecting resonance
tongues near a Hopf-Hopf bifurcation point. Our results
and those in Ref. [[4]] suggest that this phenomenon is
generic and related to the occurence of chaotic dynamics
near Hopf-Hopf bifurcation. The argument is as follows.
Close to the resonance points, the dynamics is either p:q or
p:(p+q) locked on the smooth invariant torus that emerges
from the respective torus bifurcation. The fact that the
bounding saddle-node bifurcation curves S connect means
that the p:q locked periodic solutions smoothly evolves
into p:(p+ q) locked solutions. This is perfectly possible
in a phase space of dimension at least three, but it cannot
happen while these periodic orbits lie on a smooth invari-
ant two-dimensional torus throughout (there cannot be two
periodic orbits of different winding number on one and the
same two-dimensional torus). Therefore, the smooth invari-
ant torus bifurcating from the respective torus bifurcation
T necessarily breaks up at some point when going through
the connecting resonance tongue. Such torus break-up can
typically lead to the creation of chaotic dynamics through
a quasiperiodic route to chaos [2, 12].

The simulations shown in Figure 3 and, in particular, the ap-
pearance of chaotic dynamics can, therefore, be interpreted
as follows. For a fixed value of τ and for small κ, a sta-
ble periodic solution (corresponding to a fixed number of
equidistant pulses in the feedback loop) is observed. When
κ is increased, it looses stability through a torus bifurca-
tion, which leads to the emergence of a stable invariant
torus with dynamics that is quasiperiodic or p:q locked
with very high q; see Figure 3(c2). As κ is increased, the
rotation number on the torus evolves and different reso-
nance tongues are crossed, only the larger of which with
low q can be identified in Figure 3(a); see Figure 3(c3) for
an example of such locked dynamics. As κ is increased fur-
ther, the torus breaks up and chaotic dynamics is observed
over a large range of κ; as is illustrated in Figure 3(c4,c5).
Indeed, this overall transition provides an explanation for
experimentally observed chaotic pulsing regimes as in Fig-
ure 1(d), which are reported here in this microlaser system
for the first time.

198 τ 235
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0.05

H
T 1:3 1:3

S

✟✟
1:8 ��
1:9 ✁✁

1:10
❅❅1:11 1:11 1:10 1:9 1:8 1:7 1:6

1:5
2:9

1:4

2:7

1:5

1:4

HH

Figure 5: Bifurcation diagram in the (τ, κ)-plane for
A = 2.42 near the leftmost Hopf-Hopf bifurcation point
HH (green dot), showing the self-intersecting Hopf bifurca-
tion curve H (blue), the emerging pair of torus bifurcation
curves T (green), and curves S (magenta) of saddle-node bi-
furcations of periodic orbits that bound resonance tongues
arising from selected resonance points (black dots); the
open circle on the lower curve T indicates the minimum
of the rotation number. Curves S near this minimum that
bound resonance tongues that connect two p:q resonance
points are shown in lighter magenta. The inset is an en-
largement near the 1:3 point.

3.2 Influence of decreasing the pump parameter A

We now investigate how the structure of resonance tongues
highlighted in Figure 4(b) evolves when the pump param-
eter A is decreased down towards a value A = 2. The
motivation for this is two-fold. First, in the experiment,
the pump parameter is related to the amount of energy pro-
vided to the microlaser through optical pumping and, as
such, is the main control parameter in the experiment. Sec-
ond, a recent study has shown that for A = 2 multistable
periodic regimes are found, which include non-equidistant
pulses in the feedback cavity [33]. Each of these periodic
non-equidistant pulsing regimes exists in a very large re-
gion of the (τ, κ)-plane of feedback parameters, which is
bounded by saddle-node bifurcation curves S of periodic
solutions. It has been suggested that these regions are in
fact very large resonance tongues, and we now investigate
the mechanism for the emergence of such unusally large
locking regions. For clarity, we focus on resonance tongues
associated with one pair of torus bifurcation curves only,
namely the one that emerges from the Hopf-Hopf point
HH with the smallest value of τ in Figure 4(b).

3.2.1 Rotation number near Hopf-Hopf point

Figure 5 shows the bifurcation diagram of (1) forA = 2.42
in the relevant region of the (τ, κ)-plane, featuring the
Hopf bifurcation curve H with the Hopf-Hopf bifurcation
point HH, the associated two torus bifurcation curves T,
and resonance tongues arising from selected p:q resonance
points; the latter are bounded by pairs of curves S of saddle-
node bifurcations of periodic orbits. The lower curve T in
Figure 5 has two fold points (with respect to τ ) close to
the Hopf-Hopf point HH; moreover, the rotation number α

9
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Figure 6: Bifurcation diagram in the (τ ,κ)-plane illustrat-
ing the disappearance of the Hopf-Hopf bifurcation point
HH from Figure 5 for A = 2.39 (a), A = 2.38 (b) and
A = 2.35 (c). Panels (a1)–(c1) show a larger view of the
Hopf bifurcation curve H and the torus bifurcation curves
T, where the rotation number α along T is indicated ac-
cording to the color bar and low-order resonance points
are marked. Panels (a2)–(c2) are further enlargements.

first decreases along this curve away from HH, reaches a
minimum of below 1

11 near (but not exactly at) the leftmost
sharp fold, and subsequently increases again. This is in
contrast to the properties of the corresponding lower torus
bifurcation curves T for A = 2.7 (see the leftmost part
of Figure 4(b)), which lacks the leftmost sharp fold and
along which α increases monotonically from the point HH.
The non-monotonicity of α along this curve T in Figure 5
is associated with an intriguing phenomenon: the lighter
colored saddle-node curves S connect p:q resonance points
on the decreasing part to the left of the minimum with
p :q resonance points on the increasing part to the right
of the minimum. Beyond HH, on the other hand, we find
connections by pairs of curves S between p:q on the upper
curve T and p:(p+q) resonance points on the other curve T;
this situation is as discussed above for A = 2.7. Another
interesting difference with the case A = 2.7 lies in the
shape of the 1:4 resonance tongue in Figure 5. Notice that
the 1:4 locking region in the (τ, κ)-plane is significantly
larger than for the other resonances, and it is bounded by a
single curve S; as the inset in Figure 5 shows, this curve
passes very close to the 1:3 resonance point, but does not
connect to this point.

3.2.2 Disappearance of Hopf-Hopf point

The Hopf-Hopf bifurcation point HH in Figure 5 arises
because the curve H has a little loop. Comparison with

Figure 4(b) shows that this loop becomes smaller when
the pump parameter A is decreased. Figure 6 shows that
the loop and the point HH disappear when A is decreased
further; moreover, it explains what this means for the asso-
ciated curves T of torus bifurcation. The rotation number
α along the torus bifurcation curves is represented by a
color scale in the larger view of panels (a1) to (c1), while
panels (a2) to (c2) are further enlargements. The observed
configuration in Figure 6(a) for A = 2.39 is topologically
as that for A = 2.42 in Figure 5. However, the point HH
in Figure 6(a) is now at a lower value of κ and the loop of
the curve H is even smaller; similarly, the part of the lower
torus curve T along which the rotation number α decreases
is significantly smaller than for A = 2.42. Figure 6(b) for
A = 2.38 is just past the transition of codimension three
where the loop disappears. It suggests that this type of
degenerate Hopf-Hopf bifurcation occurs when the point
HH and the leftmost fold of the lower curve T coincide at
a cusp point of the curve H. As a result, for lower values of
A, as can be observed clearly in Figure 6(c) for A = 2.35,
the two torus bifurcation curves have merged into a sin-
gle smooth curve T, which is now not connected to the
Hopf bifurcation curve. Notice that the rotation number α
changes smoothly along this single torus bifurcation curve
and has a minimum close to the leftmost fold point of T.

3.2.3 Growth and merging of resonance regions

We now show how the resonance tongues identified thus
far grow into large and experimentally relevant regions of
different observable locked periodic dynamics. To this end,
Figure 7 shows how the bifurcation diagram of (1) in the
relevant larger region of the (τ, κ)-plane changes when the
pump parameter A is decreased from A = 2.29 in panel
(a) to A = 2.23 in panel (d). The focus here is on curves S
of saddle-node bifurcation of periodic orbits that bound the
(shaded) regions with stable 1:4 dynamics, that is, where
one observes periodic pulsing with four (non-equidistant)
pulses in the feedback cavity.

Figure 7(a) for A = 2.29 shows that the 1:4 resonance
tongue bounded by a single curve S, which was identified
in Figure 5, has grown; note that this curve S in Figure 7(a)
still connects to and from a 1:4 resonance point on the
torus bifurcation curve T associated with the leftmost point
HH that just disappeared. Close by, there is another, large
1 :4 resonance region that is bounded by another curve
S and exists for larger values of τ ; we remark that this
resonance region does not connect to any resonance point
and extends to very large values of τ (as we checked by
computing its bounding curve S beyond the shown range).
When the pump parameter is changed to A = 2.28 as
shown in Figure 7(b), these two resonance regions have
merged into a single and very large 1:4 locking region
emerging from the left-most 1:4 resonance point, which
happens to be near the right-most fold on the associated
curve T. This change occurs in a saddle transition of the
bounding curves S of saddle-node bifurcations of periodic
orbits, where the two nearby fold points of the two curves
S meet and the curves connect differently.
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Figure 7: Bifurcation diagram of (1) in the (τ, κ)-plane
for A = 2.29 (a), A = 2.28 (b), A = 2.25 (c), and A =
2.23 (d), where the region of stable four-pulse solutions is
shaded; compare with Figure 5.

Panels (a) and (b) of Figure 7 also show a further locking
region that emerges from a 1:4 resonance point on a second
torus bifurcation curve T, which has a fold with respect to
τ and then terminates for low values of κ at a 1:1 resonance
point on the shown curve S of saddle-node bifurcation of
the (equidistant) periodic pulsing solutions [29]; note that
this curve S emerges near the leftmost minimum of the
curve H from a degenerate Hopf bifurcation point DH. The
two fold points of the two curves T move closer to each
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Figure 8: Disconnecting 1:4 resonance tongues of (1) in the
relevant region of the (τ, κ)-plane, showing the relevant
bifurcation curves for A = 2.29 (a), A = 2.2605 (b),
A = 2.25 (c), and A = 2.23 (d); compare with Figure 7.

other with decreasing A, and in Figure 7(c) for A = 2.25
they now connect differently; also after a saddle-transition,
now of the curves T. This means, in particular, that the
two 1:4 resonance points now lie on the same curve T.
As A is decreased further, these two points meet and then
disappear, as is shown in Figure 7(d). Simultaneousy, the
two resonance tongues meet, and their bounding curves S
connect differently. This leads to a very large resonance
region (shaded) of 1:4 locked pulsing, bounded by a curve
S, which is not connected anymore to any of the torus
bifurcation curves found in the considered parameter range.
Inside this large four-pulse region, one finds a smaller
region, bounded by a second curve S, where the locked
solution does not exist. Notice further that pairs of cusp
points have occured in Figure 7(c) and (d) on the upper
curve S and in panel (d) on the lower intermediate curve
S; these cusp points appear locally in codimension-three
swallowtail bifurcations and lead to small regions with
additional 1 : 4 locked solutions that are not discussed
further in this article.

The changes to the curves T and the bounding curves S
of the 1:4 resonance regions occur over a small param-
eter range of A and are difficult to see on the scale of
Figure 7. This is why they are illustrated further in Fig-
ure 8 with enlargements near the two 1:4 resonance points
involved. Figure 8(a) for A = 2.29 (an enlargement of
Figure 7(a)) clearly shows the respective two resonance
tongues emerging from the 1:4 resonance points near the
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folds of the two different torus bifurcation curves T. Panel
(b) for A = 2.2605 is just before the saddle transition of
these curves T: the two folds are now extremely close to-
gether and there are two 1:5 resonance points practically
on them. When the curves T are connected differently,
just after the saddle transition for A = 2.25 as shown in
Figure 8(c) (an enlargement of Figure 7(c)), the two 1:4
resonance points are now clearly on the same curve T. This
means, in particular, that there must be an extremum of
the rotation number. Different resonance points are indi-
cated along the curves T to give information on the rotation
number along them, and this shows that the point m is a
minimum near 1

5 . Similarly, there is a maximum M of the
rotation number, also near 1

5 , on the other torus bifurcation
curve T in panel (c). The value of the rotation number at
the minimum m increases as A is decreased; in the pro-
cess, the two 1 : 4 resonance points move towards each
other until they collide and disappear when the minimum
moves through 1

4 , as discussed previously. The result is the
situation for A = 2.23 in Figure 8(d) (an enlargement of
Figure 7(d)), where the bounding curves S of the associated
resonance tongues are now connected differently: they lie
either side of the point m on T and no longer interact with
this curve of torus bifurcation. Note that, throughout in
Figure 8, the lower parts of curves T are very close to the
curve S that emerges from the point DH near the minimum
of the Hopf bifurcation on the left.

Finally, as A is decreased further, the region without lock-
ing inside the large 1:4 pulsing region in Figure 7 shrinks
and eventually disappears from the shown range of τ
through a minimax transition of the bounding curve S
(this is not illustrated here). Overall, this leads to a single,
very large locking region, which is not connected to any
resonance point along a torus bifurcation curve and which
extends to very large values of the delay time τ . Similar
transitions of other resonance tongues exist as well (but
are not shown in Figures 7 and 8); this agrees with the
observation of associated regions with stable periodic solu-
tions with different numbers of non-equidistant pulses [33].
From a practical point of view, this means that, for these
lower values of the pump parameter A, locked periodic so-
lutions corresponding to such non-equidistant pulses in the
external feedback cavity can be observed over very large
ranges in the (τ, κ)-plane. This agrees with the behaviour
observed recently in both the model and an actual experi-
ment [33], which confirms that the non-equidistant pulsing
periodic regimes originate in a resonance phenomenon.

While the resulting regions of stable pulsing solutions are
large in the (τ, κ)-plane, we stress that the transitions of
resonance tongues that generate them happen in a very
narrow range of A. Hence, the system is highly sensitive
to small changes of the pump parameter. This is of prac-
tical importance since the pump parameter A is a main
control parameter in the actual experiment: even a small
change in A may result in the disappearance of the locked
solution (corresponding to non-equidistant pulses in the
feedback cavity) and, as a consequence, the appearance
of qualitatively different long-term dynamics[32]. This
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Figure 9: Sketches of the two scenarios for disconnecting
(a) and disappearing (b) p :q resonance tongues near an
extremum of the rotation number on a curve T of torus
bifurcation. Shown is the case for a minumum m where,
from top to bottom, m < p

q , m = p
q and m > p

q ; column
(b) also shows a connecting r : s resonance tongue with
m < r

s .

observed change with A appears to be sudden from an
experimental and practical perspective; mathematically, on
the other hand, it is explained by the sequence of transitions
of resonance tongues presented above.

3.3 Disconnecting and disappearing resonance
tongues near extrema of the rotation number

While Figures 7 and 8 illustrate the case of 1 : 4 reso-
nance, disconnecting resonance tongues are a generic phe-
nomenon that occurs for any pair of p:q resonance points
near an extremum of the rotation number on a torus bifur-
cation curve T. We now discuss in more detail the disap-
pearance of pairs of resonance points and the consequences
for the associated resonance tongues. To our knowledge,
this generic phenomenon of codimension three (meaning
that it happens at a specific point in a three-dimensional
parameter space, as the (τ, κ,A)-space of (1) considered
here) has not been reported in previous literature. In fact,
there are actually two different cases, as is sketched in
Figure 9 for the case that the extremum on T is a minimum
m in a two-parameter plane. In both columns (a) and (b) of
Figure 9 a pair of p:q resonance points with m < p

q collides
when m increases and reaches the value m = p

q as a third
parameter is changed, and subsequently does not exist any
longer on the curve T when m > p

q . As a function of
the third parameter (A for (1)), this corresponds to a fold
point of p:q resonance points on the curve T. Column (a)
shows the situation encountered in Section 3.2.3, where
the resonance tongues ‘point away’ from the minimum
m; as a result, the pairs of bounding curves S then meet
at m when m = p

q and form two curves on either side of
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Figure 10: Disconnecting (a) and disappearing (b) res-
onance tongues in the (τ, κ)-plane of (1) near a mini-
mum m of the rotation number on the torus bifurcation
T; here A = 2.25 with m = 0.234 (a1), A = 2.23 with
m = 0.257 (a2), A = 2.42 with m = 0.032 (b1), and
A = 2.46 with m = 0.104 (b2). Compare panels (a) with
Figure 8(c)–(d) and panels (b) with Figure 5.

the curve T for m > p
q . Since the bounding curves S are

then no longer connected with T at a point of resonance,
we refer to this generic case as that of disconnecting reso-
nance tongues. In contrast, the p:q resonance tongues in
Figure 9(b) connect near the minimum m, meaning that
the curves S bound a single small resonance region. This
p:q resonance region shrinks to a point when m = p

q and
has disappeared for m > p

q ; left are then only r : s reso-
nance tongue with m < r

s , of which one is shown in the
sketch. We refer to this generic case as that of disappearing
resonance tongues.

Figure 9 illustrates the codimension-three transitions of
disconnecting and disappearing resonance tongues locally
for a single pair of resonance points. As the value of m in-
creases smoothly and monotonically with a third parameter,
the same local scenario takes place at any point on the torus
bifurcation T where the rotation number is rational. Since
this set is dense in T, any change of the parameter leads to
infinitely many disconnecting or disappearing resonance
tongues. In other words, Figure 9 represents a countably
infinite sequence of such transitions of resonance tongues
as the third parameter is changed and the minimum m in-
creases. We remark that the case of a maximum M on
T is completely analogous: here the resonance tongues
merge or disappear at rational points when M decreases
with a third parameter. With this interpretation, we claim
that columns (a) and (b) of Figure 9 represent the unfold-
ing of the two cases of disconnecting and of disappearing
resonance tongues.

Proving that these unfoldings are generic is a challenge
that is left for future work, especially since it would re-
quire the simpler setting of an ODE rather than a DDE as
studied here. However, the correctness of these two unfold-
ings is supported by numerical evidence in the (τ, κ)-plane
of (1). Specifically, Figure 10 highlights the local situ-
ations before and after the respective transition for the
disconnecting resonance tongues in column (a) and for

(a)

m

MT

T

T

T

T

T

τ τ

rot.num
ber

κ

(b1) (b2)

m

M

T
T

T T

Figure 11: Saddle transition of torus bifurcation curves
generating a minimum m and a maximum M of the rotation
number. Panels (a) are sketches, while panels (b) show
the (τ, κ)-plane of (1) just before (b1) and after (b2) the
saddle transition, forA = 2.25 andA = 2.23, respectively.
Compare with Figure 8(b)–(c).

disappearing resonance tongues in column (b); here the
parameter A changes the value of the minimum m on the
curve T as indicated. Figure 10(a1) and (a2) show a further
enlargement that illustrates how the two shown 1:4 reso-
nance tongues from Figure 8 disconnect from T; compare
with Figure 9(a). Similarly, panels (b1) and (b2) show the
disappearance of a resonance tongue that connects two
1:10 resonance points on the curve T; notice that the other
shown resonance points and tongues have moved closer to
m and will disappear whenA is increased further. Note that
these resonance tongues disappear at the minimum near
the Hopf-Hopf bifurcation point HH shown in Figure 5.

To complete this section, we present how extrema arise
on a torus bifurcation curve in a two-parameter plane. As
row (a) of Figure 11 shows, the generic mechanism is that
of a saddle-transition of a pair of torus bifurcation curves,
which necessarily needs to respect and agree with the re-
spective changes of the rotation number along these curves.
Note that generically the rotation number is not constant,
and Figure 11(a) shows the case that it increases as indi-
cated by the arrows on the curves labeled T. As a third
parameter is changed, the saddle transition occurs: here
the two curves meet as shown at a singular point (which
is a saddle point of the surface of torus bifurcations in the
three-dimensional parameter space). The locus of torus
bifurcations connects differently past the saddle transition,
as is shown. On the level of just the curves T, this is a stan-
dard way of reconnecting the respective branches of torus
bifurcation. However, we can conclude more here: since
the rotation number is unique and common to all branches
at the singular point, a minimum m on one curve T and a
maximum M on the other curve T are necessarily created
in the process. The sketch in Figure 11(a) represents the
generic case of the saddle transition of a locus of torus bi-
furcations. As we discussed in Section 3.2.3, such a saddle
transition occurs in the (τ, κ)-plane of (1), namely between
the two situations shown in Figure 8(b) and (c). This is
illustrated more clearly in Figure 11(b) with enlargements
near the saddle transition that also shows the rotation num-
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ber along the respective curves T. Notice that the situation
in panel (b1) is very close to the saddle-transitions, where
the curves T connect.

4 Conclusion

We investigated the emergence of complex multi-frequency
dynamics in an excitable system subject a delayed feedback
loop — specifically a microlaser with optical feedback
from an external mirror. The Yamada model with delayed
feedback has been shown to reproduce accurately a range
of phenomena observed experimentally in an excitable mi-
crolaser subject to delayed optical feedback. This includes
quasiperiodic dynamics, locked periodic dynamics on a
torus and chaotic dynamics. A bifurcation analysis in the
physically relevant variables, the feedback delay τ , the
feedback strength κ and the pump parameter A, unveiled
the key role played by resonance tongues in the (τ, κ)-
plane, which arise from torus bifurcation curves that, in
turn, emerge from Hopf-Hopf bifurcation points on the
main curve of Hopf bifurcations. In particular, the emer-
gence of chaotic dynamics in the DDE results from the
mechanism of torus break-up. This is associated with the
observation of connecting resonance tongues, which con-
nect p:q resonance points with p:(p+ q)resonance points.

Our results confirm that non-equidistant pulsing periodic
solutions originate in resonance phenomena. Unexpectedly
large locking regions in which such pulsing regimes are
observed emerge in the (τ, κ)-plane from initially much
smaller resonance tongues in an intriguing sequence of
transitions when the pump parameter A is changed. In
particular, this involves several re-arrangements of pairs
of bifurcation curves in saddle transitions, as well as pairs
of p :q resonance points coming together at points on a
torus bifurcation curve where the rotation number has an
extremum. We presented (conjectural) unfoldings of the
two generic cases of disconneting and of disappearing res-
onance tongues, and also showed how extrema on torus
bifurcation curves arise. In the Yamada model with de-
layed feedback the respective transitions all occur in quick
succession, showing that the system is very sensitive to
small changes in the pump parameter A. Because A is a
main control parameter this is of practical interest in an
actual experiment — the bifurcation analysis presented
here explains the consistency and genericity of what may
otherwise be interpreted as a non-obvious sudden jump
from stable single-pulse behavior to pulsing with several
equidistant and/or non-equidistant pulses.

From a more general point of view, the DDE model con-
sidered here has only two main ingredients: excitability
and feedback. As such, our results are expected to be of
more general practical interest, beyond the particular laser
device considered in this paper. Examples with these same
ingredients are other optical systems with different types of
feedback, as well as biological systems with delayed feed-
back, which show considerable similarities, as confirmed
by a recent study with an excitable cell [35].
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