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By varying the degree of correlation in stealthy hyperuniform (SHU) materials, the con-

tinuous evolution from uncorrelated disorder to periodic media is possible and allows, as

such, to study the fate of the bimodal distribution, characteristic of a diffusive transport.

Considering the wave transport through a SHU distribution of a given number of scatterers

and at a given frequency, the transition from a diffusive to a transparent medium is clearly

observed only below the Bragg frequency. This transition is characterized by a threshold

value of the stealthiness, at the vicinity of which the material abruptly changes from dif-

fusive to transparent. Contrastingly, no such clear transition is observed at or above the

Bragg frequency and, surprisingly, a seemingly-bimodal distribution of the transmission

eigenvalues still characterizes the SHU materials, even when strongly correlated.
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Interferences play an essential role in wave transport through complex heterogeneous media.

They give rise to phenomena that prevail in the scattering properties of such media and open up

numerous applications for wave control. Enhanced backscattering, conductance fluctuations, or

the Anderson localization in disordered media1–3, as well as the band structure of the transmis-

sion spectrum in periodic media4,5, are well-known examples of interference induced phenomena.

Another striking example is the bimodal distribution of the transmission eigenvalues (TEV) in the

transport through a diffusive disordered medium6–14. The TEV distribution P(τ) indeed exhibits

two peaks corresponding to closed, almost fully reflected, eigenchannels (τ → 0) and open, al-

most fully transmitted, eigenchannels (τ→ 1). Of particular interest are the latter, which existence

implies, that, given a sufficiently controlled pattern of the incident wave, it can be transmitted

with almost no energy loss through an otherwise opaque medium. This counter-intuitive effect

has given rise to the wavefront shaping technique, following a first experimental evidence by

Vellekoop and Mosk15.

Between the limit cases of fully disordered or perfectly crystalline media, correlated materials,

that is, scattering systems which disorder displays spatial correlations, have emerged as new possi-

bilities to control waves16–19 and design functional materials20,21. Also, one may wonder about the

fate of the bimodal property when introducing correlations, especially since this property will no

longer be observed in strongly correlated, crystalline, structures, which will rather be fully opaque

or transparent due to Bragg scattering.

A good candidate to investigate the continuous transition from diffusive to transparent ma-

terials is the class of hyperuniform materials22. Hyperuniform materials are made of a discrete

distribution of scatterers on a correlated point pattern, the long-range density fluctuations of which

vanish. In Fourier space, this translates in a vanishing structure factor S(q) when |q| → 0. A

particular class of hyperuniform materials, which we will consider in this paper, is that of stealthy

hyperuniform (SHU) materials, for which the structure factor vanishes on a finite domain |q|< qc,

the bound of which depends on a stealthiness parameter, χ (see below), that allows us to contin-

uously tune the material from fully disordered to perfectly ordered23–35. As a consequence, the

material is transparent to long-wavelength incident waves under the assumption of single scat-

tering. Experimental evidences of this kind of structures has been recently shown for airborne

acoustic36,37 as well as for electromagnetic waves17,32,38.

In this work, we investigate the transition from uncorrelated disorder to periodic media by
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FIG. 1. Schematic representation of the scattering of a wave impinging on a random distribution of scat-

terers in a quasi-one-dimensional waveguide. For the sake of simplicity and computational efficiency, the

scatterers (red squares) are located on a regular grid, and a full wave numerical solution37 gives the scatter-

ing matrix of the L-length disordered slab.

considering the transmission of waves in a quasi-one-dimensional disordered waveguide. On a

L-length segment of an otherwise homogeneous waveguide with unit width (Fig. 1), local hetero-

geneities are created by changing the material parameters on a set of randomly chosen sites of a

regular grid (red squares).

Namely, the wave equation reads

div(a(r)∇ψ)+ k2b(r)ψ = 0, (1)

with a = b = 1 in the background medium of wavenumber k and a� 1, b� 1 in the scatterers.

Small values of a and b are chosen so that the scatterers behave as acoustically rigid obstacles (or as

perfectly conducting obstacles if ψ is a TM-polarized magnetic field travelling in the waveguide),

hence without resonant behaviour. With the waveguide supporting N propagating modes, the

N×N transmission matrix T of the disordered slab is computed and used to characterize the wave

transport (see37 for details on the numerical computation).

The scatterers are located on the grid as follows: (i) a 2D SHU distribution of Ns points on a

Ls×Ls square area is first generated following the procedure proposed by Froufe-Pérez et al.28 (see

below), (ii) this distribution is then scaled to a L×L area, so as to keep constant the characteristic

length d = L/
√

Ns, that is, the typical distance between the points, (iii) a subset of the point

distribution that belongs to a L×1 rectangular area is extracted, (iv) the distribution of the nearest

square sites on the grid is associated to the point distribution. Note that the mesh size is taken

small enough (typically, 10−2) to ensure that this shifting of the points on the regular grid has no

significant effect on the SHU pattern properties.

The algorithm proposed in28 starts from a random distribution of points {r j}, j ∈ [1,Ns], in a

square box and uses a simulated annealing relaxation scheme to find a pattern with a minimized
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FIG. 2. (a,b,c) typical configurations of two-dimensional SHU point patterns for increasing values of the

stealthiness (χ = 0.2, 0.48, and 0.6), obtained as detailed in Ref.28. (d,e,f) corresponding structure factor

S(q), as estimated by the spatial Fourier transform of a pattern having the dimensions (L,1) of the slab in

Fig. 1, with L = 3 (it is thus made of approximately 2000 scatterers). On each plot, the pink, red and dark

red circumferences represent the chosen observation frequencies, k/kB = 0.6, 1.08, and 1.28, see Fig. 3.

structure factor in the reciprocal domain |q|< qc:

S(q) =
1
Ns

∣∣∣∣∣ Ns

∑
j=1

eiq·r j

∣∣∣∣∣
2

< ε, (2)

with, typically, ε = 10−6. The degree of positional correlation of the generated pattern can be

encoded by the stealthiness χ:

χ =
M(qc)

2(Ns−1)
, M(qc) =

1
2

πq2
c

(2π/Ls)2 , (3)

which is the ratio of the number of constrained degrees of freedom, M(qc), over the total number

of degrees of freedom, 2(Ns−1) (upon removing the translational degrees of freedom). The lower

bound χ = 0 corresponds to an uncorrelated disordered distribution. Figures 2(a-c) show typical

patterns of SHU points distributions at low (χ = 0.20), mid (χ = 0.48), and higher (χ = 0.60)

values of the stealthiness, revealing a gradually increasing order. The SHU system crystallizes
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FIG. 3. Transmission through a slab of scatterers with correlated disorder, at a frequency below the Bragg

frequency kB (first row, a-d), at kB (second row, e-h), and above kB (third row, i-l). First (left) column:

conductance, averaged over 100 realizations, as a function of the stealthiness χ . Second column: TEV

distribution P(τ) (normalized) for selected values of χ , shown as dashed blue lines in the first column plots.

The black solid line shows the theoretical bimodal distribution 5. Third column: TEV τ2
n for the same values

of χ , ordered by decreasing values, with comparison to the bimodal relation 6. Fourth column: TEV τ2
n , as

a function of the stealthiness χ and index n.

into a square lattice when qc = qB = 2π/d, corresponding to a maximum value of the stealthiness

χmax ' π/4 for large Ns (sets of approximately 6000 points were generated for the following

numerical results).

Figures 2(d-f) show the corresponding structure factor S(q) as estimated by the spatial Fourier

transform of the L×1 distribution of scatterers aligned to the grid, with L = 3 (it is thus made of

approximately 2000 scatterers). For a low degree of correlation (χ = 0.20), the constrained region
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FIG. 4. Averaged conductance, as shown in Fig. 3(a,e,i), compared with the inverse of the integrated

structure factor F(q = αqB,χ), with (a) α = 0.6, (b) α = 1.08, (c) α = 1.27,1.28,1.29.

|q| < qc clearly appears and the surrounding region displays a global isotropy. SHU structures

remain isotropic up to χ ' 0.5, while S(q) locally increases around |q|= qB, as a precursor signa-

ture of the Bragg scattering characteristic of periodic media, see Fig. 2(e). A second local increase

near |q| = 2qB is observed. Above χ = 0.5, the structures are no longer isotropic, see Fig. 2(f),

and a discrete pattern, characteristic of a crystalline structure, gradually appears.

Let us place the generated disordered distributions of scatterers in a waveguide, as shown in

Fig. 1, and analyze how the disorder correlation affects the transmission, depending on the fre-

quency of the incident wave. To do this, three frequencies are chosen as depicted on Figs. 2(d-f)

by the pink, red, and dark red circumferences. Note that these circumferences depict the frequen-

cies in a reduced form k/kB, with kB = qB/2 = π/d, as a consequence of the von Laue condition

for scattering39 (see, e.g.,40 for details). For χ small enough, the three chosen frequencies “lie”

in the unconstrained region, see Fig. 2(d) and thus a classical diffusive transport is expected. For

larger values of χ , the transport in a strongly correlated medium, and consequently the transition

from disorder to order, is more sensitive to the frequency, and in particular to its relative value to

the Bragg frequency kB.

The first frequency, k = 0.6kB (pink circumfrence), is chosen below the Bragg frequency, such

that, for χ large enough (namely, above χ = 0.62χmax' 0.3), this frequency lies in the constrained

region and the medium is then expected to be transparent. This is indeed what is observed when

plotting the Landauer conductance g = Tr(TT†) from Ref. [41] as a function of the stealthiness,

see Fig. 3(a), where T represents the transmission matrix of the system.

The conductance is first relatively small (〈g〉/N ' 0.3, here averaged over 100 realizations

of the scatterer distribution), as typically observed in the diffusive transport, and reaches a high
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plateau for larger values of χ . Note that the conductance does not reach its maximum value,

〈g〉/N = 1, although transparency is expected. This is due to the alignment of the point pattern on

the regular grid (see above), the consequence of which is a structure factor that is not perfectly zero

in the constrained region, hence a non perfect transmission. Between these two limits (diffusive

and transparent), the transition is abrupt. Note that a scale of this transition width with χ can be

deduced from the initial point pattern. Indeed, consider an integrated structure factor

F(q,χ) = ∑
|q|=q

S(q,χ), (4)

the inverse of which is expected to be low in regions of strong scattering and large in the regions of

weak scattering, as is the transmission. Figure 4(a) shows that F−1(q,χ) displays the same abrupt

transition for k < kB (analogously, q < qB) and compares well with the conductance.

For a weakly correlated disorder, a characteristic property of the diffusive transport is that the

TEV follow the bimodal distribution

P(τ) =
N`

L+ `

1
τ
√

1− τ
, (5)

with ` the transport mean free path, as shown in Fig. 3(b), or, equivalently, in Fig. 3(c), with the

TEV following

τn =
1

cosh2 (n/n̄)
, (6)

with n̄ adjusted to meet ∑
N
n=1 cosh−2(n/n̄) = 〈g〉6,11,42. Above the threshold value χ ' 0.3 - an ex-

ample is given in Figs. 3(b-c) for χ = 0.4 - the TEV distribution no longer follows the bimodal dis-

tribution and no closed eigenchannel is observed, resulting in the strongly increased transparency

of the medium. Figure 3(d) shows the distributions of TEV, τn, as functions of the index n and

stealthiness χ: the abrupt transition from the diffusive to the transparent regime clearly appears.

Close to the Bragg frequency kB (red circumference in Fig. 2), the effect of increasing the

disorder correlation on the transmission significantly differs from that observed at lower frequen-

cies. Figure 3(e) shows the evolution of the averaged conductance with the stealthiness. While

the medium still behaves as a diffusive medium for low values of χ , with the conductance fol-

lowing the Ohm’s law 〈g〉/N = `/(L+ `)43, the Bragg scattering, consequence of the progressive

crystallization of the medium, makes the averaged transmission decrease near χ ' 0.5. Above

χ ' 0.6, the anisotropy of the hyperuniform medium makes the transmission strongly dependent

on the incident field direction, or, in our case, on the realization of the randomly generated slab in
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the waveguide: the medium can be either strongly reflecting or almost transparent. This relates to

the structure factor shown in Fig. 2(f). Near |q|= qB (red circumference) the structure factor may

be close to zero or have larger values (Bragg peaks), depending on the orientation of the wavevec-

tor. When averaging over the angles, the integrated structure factor F(q ' qB,χ) decreases with

increasing χ in the crystalline regime (χ > 0.6, see Fig. 4(b)). This decrease can be associated to

the increase of the average conductance in Fig. 3(e). Remarkably, a bimodal distribution of the

TEV is still observed when varying the stealthiness, see Figs. 3(f-h). Regardless of the disorder

correlations, the eigenchannels are predominantly closed or open.

In the last case considered (dark red circumferences in Fig. 2), when the frequency is higher

than the Bragg frequency, the wavevector always lies in the unconstrained region. A consequence

is that the value of the conductance remains roughly that in a fully diffusive medium, until the

transition from disordered to crystalline, that is, around χ ' 0.5, see Fig. 3(i). Then, the same

averaging induced effect as discussed above leads to an increase of the transmission with the

stealthiness in crystallized SHU media. Note that, above q = qB and for large χ , the evolution of

the structure factor no longer follows that of the conductance above k = kB, see Figs. 4(c). Fig-

ure 2(f) might explain this: the Fourier transform, performed over a finite L× 1 spatial domain

with finite size scatterers, displays secondary maxima whereas the Fourier transform of an infinite

periodic distribution of points, ideally giving the structure factor, would appear pointwise. Con-

sequently, the integrated structure factor, taken as an indicator of the scattering by the medium,

(a)k < kB, χ = 0.10

ψin

L = 3

(b)k < kB, χ = 0.48

ψin

FIG. 5. (a) Amplitude of a typical wavefield in a SHU medium with low stealthiness and a a frequency below

the Bragg frequency, illustrating a characteristic diffusive transport. (b) At the same frequency, amplitude of

a typical wavefield in a SHU medium with a larger stealthiness such that the medium is almost transparent.

The incident wave, ψin, is a plane wave.
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possibly overestimates this scattering.

Note, finally, that a bimodal distribution of the TEV is still observed when k > kB, regardless of

the stealthiness. Thus, although the bimodal distribution is usually known as a characteristic of the

diffusive transport in a fully disordered medium, it seems that, considering SHU media, fulfilling

a bimodal law is the rule, and breaking it, the exception.

Figures 5(a) and (b) show two snapshots for k < kB of the acoustic field through two SHU

distributions with χ = 0.10 and χ = 0.48 respectively. As discussed before in Figs. 3 and 4, the

random scattering for the SHU distribution with χ = 0.10 at the k < kB makes the material almost

opaque, as the conductance and, as a consequence, the transmission is very low. However, for the

SHU distribution with χ = 0.48 at the k < kB, the material is transparent before the transition from

diffusive to transparent media.

We have analyzed the continuous transition from the diffusive transport through an uncorrelated

disorder to the transparency or Bragg scattering in an ordered, periodic, medium. This transition

is achieved by using stealthy hyperuniform distributions of rigid scatterers in a waveguide, with

a controlled and adjustable stealthiness. A first remarkable observation is, at sufficiently low

frequency - namely, below the Bragg frequency - an abrupt transition from diffusive to transparent

is observed. A threshold value of the stealthiness, frequency dependent, separates media that

are mostly opaque for the incident wave, as illustrated in Fig. 5(a), from media that are almost

transparent, see Fig. 5(b). The mechanism and typical scale of this sharp transition, although

not fully explained with the present work, can be related to the structure factor of the spatial

distribution of the scatterer locations. The results shown here can be used for the material design

as elements to control both the diffusivity and the transparency of the material. It is also noticeable

that the bimodal distribution of the transmission eigenvalues appears as a general property of the

propagation through the SHU medium and not solely as a characteristic of the diffusive transport.
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